ECE Undergraduate

  • Overview
  • Degree Plans
  • Course Description
  • Final Year Projects
  • Enrollment and Graduation Statistics
  • Data Sheet

The electrical and computer engineering program offered by the Department is accredited by the Accreditation Board of Engineering and Technology (ABET). Also, a mechatronics program is jointly offered by the ECE and MIE Departments. In the ECE Department, we are motivated to achieve our vision of being an outstanding educational and research department in the college and in the region. The College of Engineering is the top Engineering College in Oman and offers strong undergraduate programs including Electrical and Computer Engineering, provide services, carry out basic and applied research and provide an environment, which will enable students and faculty members to contribute to the advancement of knowledge and innovative practice of engineering. The ECE Department has maintained to be the largest department in the College of Engineering since 1986. The Department continues to teach courses and conduct research in the fields of Computer Systems and Networks (CSN), Communications and Signal Processing (CSP), Electronic Instrumentation and Control (EIC), and Power Systems and Energy (PSE). A new specialization track in the area of Biomedical Signals and Medical Devices is recently approved by the University and is now going through under-structural process. In addition to its undergraduate program, the ECE Department was the first to start the Master’s program in 1998. Further, a PhD program was launched in 2009.

 

Students are accepted in the ECE program from the intakes of the College of Engineering after they become eligible for specialization based on the College regulations. They must complete 25 credits before allocation of specialization (ECE, PCE, MIE, CAE, and MCTE) of which 12 credits must be from College of Engineering requirements. Criteria for distribution into specialization (ECE, PCE, MIE, CAE, and MCTE) depends on students’ choice, availability of seats in the specialization and his cumulative GPA. The total number of credits required by a student to graduate in ECE is a minimum of 136 credits. Our students get the degree of B.Eng. in Electrical and Computer Engineering as major and with any one sub-specialization (CSN, CSP, PSE or EIC) as minor.

 

 

  B.Eng Degree Requirements

Requirements

No. of Credits

University Requirements

06

University Electives

06

College Requirements

32

College Electives

03

Department Requirements

56

Specialization Requirements

24

Specialization Electives

09

TOTAL

136

 

 

 

 

Common Courses within the ECE Department:

Circuit Analysis I, Circuit Analysis II, Electromagnetics I, Electromagnetics II Elect. Measurements & Instrumentations, Signals & Systems, Electronics I, Electronics II, Digital Logic Design, Electrical Technology, Applied Engineering Programming, Eng. Design and Professional Skills, Professional Skills, Principles of Analog & Digital Comm., Embedded Systems, Linear Control Systems, Eng. Management & Economics I, Project (Part I), Project (Part II),Discrete Maths and Complex Analysis, Numerical Analysis. The Bachelor degree is designed to provide undergraduate education in this field of Engineering, with an excellent hand on skills. ECE department is having four specialization tracks as mentioned below:

 

Communications and Signal Processing Specialization Courses:

Electromagnetics II, Digital Signal Processing, Principles Digital Communications, Introduction to Computer Networks, Antennas & Wave Propagation, Optical Communications, Wireless Communications, Advanced Digital Signal Processing

 

Computer Systems and Networks Specialization:

Introduction to Computer Networks, Operating Systems, Applied Algorithms for ECE, Adv. Logic & Computer Interfacing, Computing Systems for Engineering Applications, Adv.  Embedded Systems Design, Computer Architecture & Organ., Advanced Computer Networks

 

Electronic Instrumentation and Control Specialization:

Digital Signal Processing, Electrical Machines, Industrial Control Systems Design, Sensors and Actuators, Power Electronics & Drives, Control System Design, Computer-Aided Instrumentation, Introduction to Computer Networks

 

Power Systems and Energy Specialization:

Electromagnetics II, Power System Analysis I, Power System Analysis II, Electrical Machines, Power Electronics & Drives, Power Systems Protection, Power Distribution System Eng., High Voltage Engineering

 

 

Industrial Training Courses:

Two mandatory Industrial Training courses are also part of the College requirement. In Training I, students get a 2-week in-house training in their third year, during the semester break between the fall and spring semesters (In the month of January). In the ECE Department, this training is in the form of laboratory projects that are conducted in the Electrical engineering laboratories. Training II is planned in the summer after the students complete their fourth year. For a period of 8 weeks, the students receive training from a private company or government ministry related to their specialization arranged SQU. A number of students receive their summer training abroad through collaboration agreements with international parties or through International Association for the Exchange of Students for Technical Experience (IAESTE). The student, supervised by the training organization, has to submit a report to his/her program at the end of the training period. The industrial training program is coordinated by the Assistant Dean for Industrial Training and Community Services. 

 

 

 

 

In order to graduate, a student is required to complete a total of 136 credit hours resulting in the award of a Bachelor Degree in Electrical and Computer Engineering (ECE). The credit hours are allocated to University, College and Department requirements.

 

 

 

The Electrical and Computer Engineering undergraduate degree plans can be downloaded by clicking on the following links:

 

- 2017 Degree Plan 

- 2016 Degree Plan

- 2015 Degree Plan

- 2014 Degree Plan

2013 Degree Plan 

2012 Degree Plan

2011 Degree Plan

 
 
 
 
 
 
 
 

 

ECCE2016 Circuit Analysis I (3 Credits)

(Prerequisite: PHYS2107 or PHYS2101)

Electrical quantities and terminology used in electrical engineering. Methods and theorems used in DC analysis. DC and transient analysis of R, RC and RL circuits both manually and with SPICE simulator.

 

ECCE3016 Circuit Analysis II (3 Credits)

(Prerequisite: ECCE2016)

This is the second part of a two-semester course in circuit analysis. The course second part topics deal with sinusoids, phasor concept, steady-state response, average power and RMS values, magnetically coupled circuits, three-phase circuits, complex frequency, resonance, circuit analysis using Laplace Transform, and two-port networks.

 

ECCE3022 Electromagnetics I (3 Credits)

(Prerequisites: MATH3171, PHYS2108)

This is the first part of a two-semester course in engineering electromagnetics that deals with static fields. Topics cover: Review of vector algebra, coordinate systems and transformation, vector calculus. Electrostatic Fields: Characteristics and Laws. Electric Fields in Materials, Electric Boundary Conditions, Magnetostatic Fields: Characteristics and Governing Laws, and Electrical Classification of Materials, Maxwell's Equations for Static Fields.

 

ECCE3036 Measurements & Instrumentation (3 Credits)

(Prerequisites: ECCE3016, ECCE3152)

This course, designed for the students of Electrical & Computer Engineering, covers instrument static and dynamic characteristics, measurement errors, statistical evaluation of measurement data, standards and calibration of instruments, principles of analog & digital voltmeters, single and three phase watt meters, instruments for measurement of frequency and phase,  measurements of  resistors using DC bridges and of capacitance, inductance and frequencies  using AC bridges, classification and selection of transducers, data acquisition systems, A/D and D/A converters.  The course includes a lab which provides basic background in measurements & instrumentation.

 


 

ECCE3142 Signals & Systems (3 Credits)

(Prerequisite: ECCE3016)

Signals and systems characteristics and models. Systems defined by differential and difference equations, system modeling. Time and frequency-domain representation and analysis of continuous & discrete time signals and systems, Fourier Series and Fourier transform, Laplace transform, z-transform. Investigation of the above concepts using MATLAB.

 

ECCE3152 Electronics I (3 Credits)

(Prerequisite: ECCE2016)

Electronic devices (Op amps, BJT, diodes, bipolar junction transistors and metal-oxide Semiconductor field-effect transistors). Techniques used for analyzing electronic devices and circuits both manually and with CAD tools like PSPICE simulator. Basic circuits applications.

 

ECCE3206 Digital Logic Design (3 Credits)

This is an introductory course (3 credit-hours) in logic and digital design. Course topics cover number systems, Boolean algebra and logic gates, simplification of Boolean functions, combinational logic design, MSI and PLD components, sequential logic design, registers, counters, and the memory unit.

 

ECCE3258 Applied Engineering Programming (1 Credit)

(Prerequisite: COMP2002)

This course aims to reinforce the programming and algorithmic concepts learned in COMP2002. The course is mainly practical based and run in labs. Students will learn to design flow charts and basic algorithms for engineering problems that involve, e.g., finding roots, solving linear equations, and curve fitting. The students will then translate their solutions into correctly-running programs using any appropriate programming tool in C, C++, MATLAB, or Java.

 

ECCE3352 Electrical Technology (3 Credits)

(Prerequisite: ECCE3016)

This course covers fundamentals of Electric Energy Systems, Electric Energy Conversion, Transformer, Fundamentals of AD & DC Machines, Power Electronics and introduction to Engineering Ethics.

 

ECCE4005 Numerical Methods for Engineers (3 Credits)

(Prerequisites: (ENGR2216, MATH3171) or (COMP2002, MATH3171) or (COMP2216, MATH3171))

This course covers the basics of numerical methods for the solution of applied problems in engineering. It concentrates on the mathematical analysis and implementation of basic numerical techniques. Topics relate to various numerical methods developed for solving linear/non-linear equations, curve fitting and interpolation. This course also introduces students to numerical differentiation, integration and an introduction to solve first order ordinary and partial differential equations. The applications related to each topic in electrical engineering are also covered.

 

ECCE4022 Electromagnetic II (3 Credits)

(Prerequisite: ECCE3022)

This is the second part of two-semester course in engineering electromagnetic. Topics cover: Poisson's and Laplace equations, resistance and capacitance. Time varying fields and electromagnetic induction, Maxwell's equations. Electromagnetic wave propagation: Plane waves in conductors and in dielectrics; Power and the Pointing Vector; Wave polarization. Transmission lines.

 

ECCE4080 Seminars and Field-Work (No Credits)

The goal of this course is to provide the students with general knowledge and skills encompassing a wide area, and also to present them with topics in the engineering field and business that might not be addressed in their degree plans and that can broaden their thinking skills.  An example of the topics that might be covered are: ethics, safety, life-long learning, functioning in business organizations, CV preparation and interviews, communication and presentation skills, design issues, time management planning, privatization of electricity in Oman, E-government, creative enterprises (incubators), and global issues.

 

ECCE4122 Principles of Analog & Digital Communication (3 Credits)

(Prerequisite: ECCE3142)

This is an introductory course about the principles of analog and digital communications. Topics covered include: review of Fourier representation of signals and systems, analogue modulation schemes (amplitude modulation and angle modulation), pulse modulation, sampling  theorem, quantization, pulse code modulation, line codes, digital modulations (amplitude-shift keying, phase-shift keying, frequency-shift keying), M-ary digital modulation schemes.

 

ECCE4124 Digital Communications (4 Credits)

(Prerequisite: ECCE4122)

Data Transmission Fundamentals: Binary signaling, multi-level signaling (M-ary signaling), information transfer rate, bandwidth efficiency, calculation of channel capacity. Baseband Data Transmission: ISI, eye diagrams, raised cosine filtering, matched filtering. Channel Degradation Sources: Gain, phase and group delay, distortion, interference and noise. Bandpass Digital Modulation: ASK, FSK, PSK. Multi-level Digital Modulation: M-ary ASK,M-ary FSK, M-ary PSK Coding Theory: Source coding, channel coding, block coding, convolutional coding. Multi-User Digital Modulation Techniques: FDMA, TDMA, CDMA.

 

ECCE4126 Principles Digital Communications (3 Credits)

(Prerequisite: ECCE4122)

Introduction to Digital Communications. Review of Probability Theory and Random Processes. Baseband Data Transmission: Baseband Signaling Schemes, Spectrum, and Error Performance. . Intersymbol Interference and Signaling Over Band-limited Channels. Optimal Receivers for Binary Data Transmission. Digital Modulation: ASK, PSK, FSK, QPSK, OQPSK, and MSK Signaling. M-ary Signaling Techniques. Introduction to Channel coding and Information theory.

 

ECCE4142 Digital Signal Processing (3 Credits)

((Prerequisite: ECCE3142) (co-requisite: ECCE4122))

This is an introductory course in digital signal processing. It covers discrete-time signals and systems, convolution, linear-time invariant systems. Sampling, Discrete-Time Transforms: Discrete-Time Fourier Transform DFT and Fast Fourier Transform FFT, Z-Transform. Digital filters, structures for discrete-time systems, digital filter design, FIR filter design, IIR filter design. DSP applications: Simulation with DSP Board, Matlab Simulink, and Matlab software programming.

 

ECCE4158 Electronics II (3 Credits)

(Prerequisite: ECCE3152)

This is an advanced course in electronics which deals with concept, analysis and design of electronic circuits using discrete and integrated devices. Digital logic circuits. Switching response times of discrete devices and basic logic gates used in integrated digital circuits. Bode Plots. Feedbacks and Oscillators. Output Stages and Power amplifiers. Electronic Circuit Design and Applications. Labs on electronic circuits based on Diodes, Transistors, and Op Amps. CAD tools are used to analyze circuits.

 

ECCE4203 Advanced Logic Design (3 Credits)

(Prerequisite: ECCE3206)

Design of synchronous asynchronous sequential circuits: Flow tables, races, and hazards. Algorithmic state machines. Combinational programmable logic devices. Programmable logic arrays. Sequential programmable logic devices. Design for testability.

 

ECCE4213 Digital Electronics – Reliability and Testing (3 Credits)

(Prerequisite: ECCE3152)

Testing diodes and transistor logic circuits. Noise margins and fanout. MOS and CMOS devices. Applications in the design of combinational circuits and sequential circuits. Semiconductor memories. Fault models in digital circuits. Testing of digital circuits and memories.

 

ECCE4227 Embedded Systems (3 Credits)

(Prerequisites: COMP2002, ECCE3206, (ECCE3152 or MCTE3110))

This is an introductory course about microcontroller antd its use in the design of embedded systems. Topics covered include hardware and software architectures of a microcontroller, assembly language programming for the microcontroller, and its application for a wide range of real-world applications.

 

ECCE4232 Introduction to Distributed & Parallel Systems (3 Credits)    

(Prerequisite: ECCE4227)

Introduction to distributed and parallel systems: Parallel processing mechanisms. Architectural classification schemes. Parallel computer structures. Principles of pipelining. Structures and algorithms for array processors. Multiprocessor architecture. Interconnection networks. Dataflow computers.

 

ECCE4242 Introduction to Computer Networks (3 Credits)

(Corequisite: ECCE4227 or COMP3518) or ECCE 4122

Local Area Network (Ethernet, Token Ring, FDDI): Transmission Medium, Medium Access Control, Repeaters, Bridges and Routers. Internet Protocols (TCP/IP, ICMP, etc...). Client Server Architecture. Internet Applications (DNS, DHCP, FTP, etc...).

 

ECCE4252 Data Structures and Algorithms (3 Credits)            (Prerequisite: COMP2002)

This course covers fundamental concepts in data structure and algorithms. Topics covered include: lists, stacks, queues, heaps, trees, various searching and sorting algorithms. The performance of the various sorting methods are compared and analyzed.

 

ECCE4253 Object Oriented Programming (3 Credits)

(Prerequisite: COMP2002)

This course provides necessary high-level skills and knowledge to develop modern Windows-based applications using object-oriented concept of programming. At the end of the course, students will be aware of software development tools and technologies, be able to write solid event-driven code using Visual Basic; create stand-alone, multiform applications and create effective interfaces.

 

ECCE4254 Operating Systems (3 Credits)

(Prerequisite: COMP2002)

The goal of this course is introduce students to key operating system services including process management, memory management, file system organization, disk and CPU scheduling, virtual memory, concurrent processing, protection and security. The course covers aspects of the DOS and Linux operating systems, C programming, and programs that communicate across a network.

 

ECCE4255 Applied Programming & Algorithms for Engineers (3 Credits)

(Prerequisite: COMP2002)

Fundamental concepts in data structure and algorithms applied to engineering problem solving. The course covers some essential data structure topics such as lists, stack and trees as well as basic algorithms such as sorting, searching, matching and few graph algorithms (e.g. shortest path). In lab sessions, the above topics are deployed in solving engineering problems for efficient implementation in C, C++ or JAVA.

 

ECCE4256 Engineering Design Issues and Professional Practices (3 Credits)

(Prerequisite: ECCE4227)

In this course students will learn essential engineering skills that will help them identify and effectively solve engineering design problems. Topics covered includes engineering design process, engineering project management and economics issues, effective teamwork, effective report writing and effective project presentation skills. In addition, ethical, safety, environmental, societal and political issues related to engineering as well as professional engineering practice will be addressed. Students will apply the skills learned in this course to their Final Year Project to improve it.

 

ECCE4263 Database Systems ( 3 Credits)

(Prerequisite: COMP2002)

Concepts and principles of database management systems. Basic concepts. System structures. Data models, Database languages (SQL in particular). Relational database normalization. File systems. Indexing. Query processing. Concurrency control. Recovery schemes.

 

ECCE4272  Artificial Intelligence ( 3 Credits)

Fundamentals of automated reasoning in expert systems: Semantics and satisfaction, inference procedures, logical implication, proofs, unification, resolution, soundness and completeness. Searching strategies and problem solving. Limits of monotonic logic: forms of non-monotonic reasoning. The course includes a term project that consists of writing a small inference engine in Lisp.

 

ECCE4282 Coding and Data Encryption (3 Credits)

(Prerequisite: ECCE3122 or ECCE4122)

This course covers modern cryptography and data security. The basic information theoretic and computational properties of classical and modern cryptographic systems are presented, followed by a cryptanalytic examination of several important systems. Application of cryptography to the security of electronic mail, timesharing systems, computer networks and data bases are studied.

 

ECCE4312 Power System Analysis I (3 Credits)

(Prerequisite: ECCE3352)

Power system components. Transmission line parameters: Inductance and capacitance. Model for short, medium, and long lines. Steady-state operation of transmission lines. Shunt and series compensation. Per unit systems. Bus admittance and impedance matrices. Symmetrical fault.

 

ECCE4316 Power System Analysis II (3 Credits)

(Prerequisite: ECCE4312)

This course covers the following main topics in power system analysis: Power-flow studies. Network calculations: node elimination, building and modifying bus impedance matrix. Symmetrical components. Unsymmetrical faults. Economic dispatch. Transient stability: swing equation, equal-area criterion, time-domain simulation.

 

ECCE4416 Linear Control Systems (3 Credits)

(Prerequisite: ECCE3142 or MATH4174)

Introduction to control systems. Mathematical modeling and representation of dynamical systems. Time domain analysis of control systems. Frequency domain analysis of control systems. Stability of control systems. Time domain design of control systems (Root Locus techniques). Frequency domain design of control systems. Introduction to modern control systems.

 

ECCE4422 Digital Control Systems (3 Credits)

(Prerequisite: ECCE4416)

Control loops with samplers. Discrete control loop analysis. Stability analysis of digital control systems. Controller design for SISO systems. State space analysis and design of digital control systems. Implementation issues and Case studies.

 

ECCE4436 Industrial Control Systems Design (3 Credits)

(Prerequisite: ECCE4416)

Overview on control system components, and process diagrams, Review of transducers and actuators of interest, signal conditioning instrumentation amplifiers, PID industrial controller design, tuning, and implementation, Introduction to programmable controllers PLCs and SCADA systems.             

 

ECCE4455 Sensors and Actuators (3 Credits)

(Prerequisite: ECCE3036)

This course is designed to provide students with a clear, concise, and up-to-date information for understanding today's sensor technology and actuators. The course covers most types of sensors, e.g. pressure, level, flow, dimension, displacement, velocity, acceleration , viscosity, moisture, sound, light, pH, gas, radiation sensors. Smart sensors. Analog and digital signal conditioning. Magnetic actuators operated by DC and AC. Hydraulic and pneumatic actuators.

 

ECCE4467 Power Electronics & Drives (3 Credits)

(Prerequisites: (ECCE3152 or MCTE3110), (ECCE3352 or MCTE3210))

This is a basic course in power electronics and electrical drives. It covers power semiconductor devices and converters, speed/torque characteristics of motors and loads, operating point, multi-quadrant operation, DC and AC motors steady state modeling, speed control and barking, semiconductor controlled DC and AC motor drives.

 

ECCE5004 Eng. Management & Economics I (3 Credits)

(Prerequisite: STAT2103)

This course focuses on introducing to the engineering students a variety of tools and techniques in management & economics that can be used to facilitate the optimum utilization of manpower, materials, machines, money, and other resources.

 

ECCE5008 Project Management (3 Credits)

(Prerequisite: ECCE5004)

Management methods and techniques of projects in Government and private sector organizations. Introduction to project development. Phases of project planning and management. Budgeting and cost estimation. Resource allocation. Organizing, staffing and directing, Project management techniques. Project controlling and monitoring. Cost management. Risk analysis. Quality management.

 

ECCE5009 Final Year Project (Part I) (2 Credits)

(Prerequisites: ((ECCE4142, MATH4452) or (ECCE4242, MATH4452) or  (ECCE4416, MATH4452) or (ECCE4312, MATH4452)))

(Co-requisite: MATH3330 or MATH3340)

Part I of the final year project which extends over two semesters. Topics will depend on student's and supervisor's interest. They may include data acquisition and interpretation, computer models and simulation or design and experimentation. Students are required to give a seminar to discuss the project results and submit a final report .

 

ECCE5099 Final Year Project (Part II) (3 Credits)

(Prerequisite: ECCE 5009)

Part II of the final year project which extends over two semesters. Topics will depend on student's and supervisor's interest. They may include data acquisition and interpretation, computer models and simulation or design and experimentation. Students are required to give a seminar to discuss the project results and submit a final report.

 

ECCE5112 Antennas & Wave Propagation (3 Credits)

(Prerequisite: ECCE4022)

Fundamental antenna parameters. Radiation pattern. Far-field, directivity. Radiation efficiency. Gain impedance. Bandwidth. Polarization. Antenna noise temperature. Friis power transmission formula. Basic types of antenna. Dipoles, arrays and long-wire antennas. Aperture-type antennas. Reflector antennas. Printed antennas. Propagation: electromagnetic wave propagation of various frequency ranges. Design of radio links.

 

ECCE5122 Communication Systems (3 Credits)

(Prerequisite: ECCE4124 or ECCE4126)

This course deals with communication systems. Topics covered include the communication channel; digital signals and digital communication telephony: telex, facsimile, teletext; local area networks (LAN); integrated services digital network (ISDN); satellite communications.

 

ECCE5123 Optical Communications (3 Credits)

(Prerequisite: ECCE4122)

This course is a comprehensive and in-depth introduction to the basics of optical communications with fiber transmission lines. The topics to be covered include the lightwave fundamentals, optical waveguides and fibers, dispersion, distortion and attenuation in optical communication systems, different optical sources, transmitters, detectors and receivers, passive couplers, connectors, modulators, amplifiers, filters and system design parameters.

 

ECCE5124 Wireless Communications (3 Credits)

(Prerequisite: ECCE4124 or ECCE4126)

This course addresses the following topics: overview of existing mobile communication standards, cellular telephony concept, inter-symbol interference, multiple-access techniques, multi-path channels, flat-fading and frequency-selective channels, Rayleigh and Ricean channels, bit error probability over AWGN and slow, flat fading Rayleigh channels, diversity, channel coding, and Rake receiver structure.

 

ECCE5134 Selected Topics in Communication (3 Credits)

(Prerequisite: ECCE4124 or ECCE4126)

This course covers the current state of the art in some of the hot areas of interest to student in the field of communication engineering.

 

ECCE5142 Image and Video Processing (3 Credits)

(Prerequisite: ECCE4142)

Introduction to digital image processing, Digital image fundamentals, Image transforms, image enhancement, image restoration, image compression, color image processing, video coding, motion estimation.

 

ECCE5143 Advanced Digital Signal Processing (3 Credits)

(Prerequisite: ECCE4142 and ECCE 4227)

This is an advanced course in Digital Signal Processing. It covers, Digital filter design, implementation of FIR and IIR filter design techniques using DSP board and Matlab Simulink. Multirate DSP: Decimation and Interpolation, sampling rate conversion, applications. Selected topics in advanced DSP (Image Processing Basics, image compression techniques and basics of video signals Speech processing, Biomedical Signal Processing).    

 

ECCE5152 Electronic Communication Circuits (3 Credits)

(Prerequisite: ECCE4157 or ECCE4158)

This course deals with theoretical analysis, practical issues and simulation of communication circuits. Small signal amplifiers. Audio and video amplifiers. Oscillators. Resonant circuits; coupling tuned circuits; IF and RF amplifiers. Mixers; frequency conversion; modulators and detectors. Phase Locked Loops (PLL). Network noise and intermodulation distortion.

 

ECCE5162 Microwave Engineering (3 Credits)

(Prerequisite: ECCE4022)

Microwave components, devices, techniques and systems. Fundamental concepts of Maxwell's equations. Wave propagation. Network analysis and design principles. Applications of microwave engineering. Transmission line theory. Transmission lines and waveguides. Microwave network analysis. Impedance matching and tuning. Microwave resonators. Power dividers and directional couplers. Microwave systems.

 

ECCE5164 RF Communications Circuits (3 Credits)

(Prerequisite: ECCE4157 or ECCE4158)

This course aims to provide students with the introduction of RF communications circuits design. The course covers the issues of RF circuit analysis & design; micro strip transmission line designing and analysis; S-parameters; Couplers and filter design (Interdigital OCTL/SCTL type); oscillators; Modulators, Low-noise and switching mode high efficient class-E Power Amplifiers (PA) design, CMOS Power amplifiers design issues, RFs safety in designing and international standards, overview of state of the art fabrication techniques and applications, Computer aided design and simulation of RF circuits using ADS.

 

ECCE5212 VLSI Design (3 Credits)

(Prerequisite: ECCE4227)

Very Large Scale integrated (VLSI) circuit design. Provides a review of FET basics with Functional module design including combinational memory, combinational logic, programmable logic arrays and finite-state machines. Computer-aided VLSI fabrication techniques, layout strategies, scalable design rules, design-rule-checking and guidelines for testing and testability are covered along with. Survey of VLSI applications.          

 

ECCE5213 Fault-Tolerant Computing Systems (3 Credits)

(Prerequisite: ECCE4227)

This course addresses design, modeling, analysis, and integration of hardware and software issues to achieve dependable computing systems employing on-line fault-tolerance. The course centers mainly around the concepts of Fault-Tolerant System Design based on: Redundancy, Reliability and Testing. It includes and covers the concepts of Dependability, Maintainability, Error Detection, Voting and Fault Diagnosis and their related models.

 

ECCE5214 Advanced Logic and Computer Interfacing (3 Credits)    (Prerequisite: ECCE4227)

This course is designed to introduce the design of complex logic systems underlying or supporting the operation of computer systems and interfaces. You will learn how to use advanced computer-aided design tools to develop and simulate logic systems consisting of MSI components such as adders, multiplexers, latches, and counters. The concept of synchronous logic is introduced through the design and implementation of Mealy and Moore machines. Hardware description languages are introduced and used to describe and implement combinational circuits. Students will also learn how to use programmable logic devices to implement customized designs.

 


 

ECCE5215 Computing Systems for Engineering Applications (3 Credits)

(Prerequisites: (ECCE4255 or ECCE4252), ECCE4242)

This is an advanced course where real-world examples and case studies from industry are covered to demonstrate to students the important up-to-date applications of computing systems in various engineering fields. Examples of applications are: consumer electronics, robotics, smart oil fields, networking and telecommunication.

 

ECCE5222 Microprocessor Interfacing (3 Credits)

(Prerequisite: ECCE4227)

This is a senior level course, which covers various aspects of interfacing microprocessors with peripheral and memory devices. Topics include general structures of advanced microprocessors; static and dynamic memory interfaces; DMA controllers; interrupt controllers; memory management units interfaces to keyboard, disk and CRT, data communications interfaces.

 

ECCE5223 Advanced Embedded Systems Design (3 Credits)

(Prerequisite: ECCE4227)

This is an advanced course on the design of embedded systems for various real-world applications in a real-time operating system (RTOS) environment using variety of software and C/C++ programming languages. Applications studied include digital signal processing, industrial automation and control, computer networking, and consumer devices.

 

ECCE5224 Microprocessor Based Control Design (3 Credits)              

(Prerequisite: ECCE4227)

The course treats the basic aspects of choice of architecture, technology - microprocessors; operations and timing diagrams; microprocessor simulator; designing and debugging of microprocessor based systems; required electronic circuits for building microprocessor based control systems; case studies.

 

ECCE5231 Industrial Networks and Operating Systems (3 Credits)                 

(Prerequisites: COMP2002, ECCE4122)

Introduction to operating system services, cpu scheduling, processes and threads, virtual memory management, protection and security. Aspects of the DOS and UNIX operating systems. Introduction to multiuser and multitasking network operating systems, their characteristics, and network security issues. An overview of computer networks, types, topologies, and devices. introduction to IP, IPX, Frame Relay and ISDN, ATM., global intranet, custom queuing, and routed priority services.

 

ECCE5232 Computer Architecture & Organization (3 Credits)           

(Prerequisite: ECCE4227)

This course teaches the fundamentals of modern computer systems with detailed emphasis on the internal working of various processor's components. Topics covered include central processing unit (control unit, arithmetic and logic unit, registers), memory (internal, external, cache), input/output and interfaces, RISC/CISC, pipelining, and introduction to parallel processing.

 

ECCE5233 Computer Architecture and Organization II (3 Credits)                   

(Prerequisite: ECCE5232)

This is the second part of a two-semester course in computer architecture. Course topics include high speed arithmetic algorithms. Pipeline computers, multiprocessor systems, array and data flow computers, vector processors. Memory hierarchies, virtual memory, cache memory, input-output systems, DMA and interrupts.

 

ECCE5242 Advanced Computer Networks (3 Credits)           

(Prerequisite: ECCE4242)

The objective of this course is to provide students with a deep and advanced knowledge on computer networks. The course will cover different networking equipment's used in WANs such as routers and LANs such as switches. The students will also learn how to select, connect, and configure routers and switches to achieve expected goals.

 

ECCE5243 Network Software Design and Programming (3 Credits)               

(Prerequisite: ECCE4242)

The course is aimed at exposing students to general aspects of network software design and programming. Related architectures and communication protocols including medium access, routing, congestion control, internetworking, connection issues and overview of Internet application protocols will be dealt with appropriate concepts of design the necessary software.

 

ECCE5252 Software Engineering (3 Credits)

(Prerequisite: ECCE4252 or ECCE4255)

Designing, development and commissioning of large software systems. Software life cycle. Requirements specification. Module decomposition. Module specification. Implementation and test planning. Software reliability and security. Multi-user environments. Project management issues. The course involves a group project.

 

ECCE5282 Computer Network Security (3 Credits)

(Prerequisite: ECCE4242)

This course introduces basic computer network security concepts. Topics include: network security objectives and mechanisms, basic cryptography, attacks and countermeasures at various layers of networking protocol stack, and networking devices security.

 

ECCE5283 Cryptography, Security, and e-Commerce (3 Credits)      

(Prerequisite: ECCE4242)

This course is serves as a broad introduction to cryptography and its application to computer-network security services and mechanisms, such as confidentiality, digital signature, access control, and electronic payments. Analysis of software and hardware implementations of cryptographic algorithms and network-security protocols are covered. Topics also include techniques for authentication, privacy, denial of service, and non-repudiation. Current Internet distributed security models and protocols are discussed in the context of these techniques. Of special importance are the application to Internet infrastructure protocols, such as Internet routing and transport protocols, as well as secure mail, directory and multimedia multicast services.

 

ECCE5292 Selected Topics in Computer Engineering (3 Credits)      

(Prerequisites: ECCE4227, (ECCE4242 or ECCE5231))

This course covers the current state of the art in some of the hot areas of interest to student in the field of computer engineering.

 

ECCE5302 Power Systems Protection (3 Credits)

(Prerequisite: ECCE4316)

This course provides the students with a background on protection of electric power system. It presents the different components of protection, different types of relays  and how these relays can be set to protect the different parts of the power system. It also introduces the modern techniques in protection such as; the use of static and microprocessor relays.

 

ECCE5303 Power Distribution System Eng. (3 Credits)    

(Prerequisite: ECCE4316)

Load characteristics and its applications. Load forecasting. Types of distribution networks. Selection of distribution transformers. Voltage drop and voltage regulation.Voltage dip due to motor starting. Design of distribution feeders. Power-factor correction, Power Quality.

 

ECCE5304 Power Stations (3 Credits)

(Prerequisite: ECCE4312)

Conventional and non-conventional power generation. Sources of energy. Types of power plants. Major equipment installed and layouts of different types of power stations. Environmental performance of power plants and the equipment installed to mitigate the environmental affects. Power plant costs, factors and definitions. Economic evaluation of power projects. Electricity trading and evolvement of electricity sector.

 

ECCE5312 Power System Control and Stability (3 Credits)    

(Prerequisite: ECCE4316)

This is an advanced course on power systems control and stability. The course covers mathematical models and state-space representation of synchronous machine, power system stability studies and calculations; excitation control systems and their effect on dynamic and transient stability; turbine-governor control; load frequency control of single area and multiarea power system.

 

ECCE5314 Selected Topics in Power (3 Credits)

(Prerequisite: ECCE4312)

Special topics in the field of electrical power system engineering.

 

ECCE5322 Electrical Power Systems Quality (3 Credits)       

(Prerequisite: ECCE4312)

Introduction to power quality, Terms and definitions,  Power quality problems, Voltage sage and interruptions, Transient overvoltage, Harmonics, Source of harmonics, Harmonics Mitigation, Harmonics filter design, Monitoring power quality,  Improving power quality.

 

ECCE5323 Power System Operation (3 Credits)

(Prerequisite: ECCE4316)

Economic dispatch of power generation units. Load frequency control. Interchange of power and energy. Power system security. Optimal power flow. An introduction to state estimation in power system.

 

ECCE5324 Power System Reliability and Planning (3 Credits)           

(Prerequisite: ECCE4312)

Introduction to reliability engineering, basic concepts and power plant reliability. Generation and transmission system reliability. Reliability worth evaluation. Energy production simulation. Generation planning methodologies. Demand-side management. Integrated demand-supply planning including externalities. Transmission planning. Electricity tariffs.

 

ECCE5332 High Voltage Engineering (3 Credits)

(Prerequisite: ECCE4312)

(Co-requisite: ECCE3352 or ECCE4022)

This is an introductory course in High Voltage Engineering, which is aimed the students specialized in Energy and Power Systems. This course covers a wide spectrum of High Voltage Engineering topics and introduces the students to the importance of using high voltage, circuit interruption and circuit breakers, types of overvoltages and surge arresters, insulation coordination, high voltage generation and measurement, and dielectric breakdown of different states of matter and protective grounding.

 

ECCE5333 Power System Economics (3 Credits)

(Prerequisite: ECCE4312)

The goal of this course is provide the students with knowledge on the issues of electricity privatization and open market competition in electricity sector. The course also provides students with knowledge on the fundamentals of economics and gives awareness on the Current arrangement of electricity market in Sultanate of Oman.

 

ECCE5352 Generalized Machine Theory (3 Credits)

(Prerequisite: ECCE4358)

This course covers: Application of matrix algebra to static electric networks, matrix equations of transformers, matrix equations of basic rotating machines, commutator machines, linear transformation in electrical machines, polyphase machines.

 

ECCE5422 Selected Topics in Control Systems (3 Credits)                   

(Prerequisite: ECCE4416 or MCTE4250)

A seminar-type course which covers topics of current interest in control systems design and analysis. the subject matter of this course will vary from year to year.

 

ECCE5432 Programmable Logic Control Systems (3 Credits)

(Prerequisite: ECCE3206 and ECCE4416)

Control system components modeling and design of sequential controls, Review of sensors and actuators of interest, Programmable controllers (PLCs): principles, interfaces and programming. Programmable controller's communications and networking, User interfaces, Process monitoring and visualization, Supervisory control and data acquisition systems (SCADA).

 

ECCE5433 Modern Control Systems (3 Credits)

(Prerequisite: ECCE4416)

State space representation of dynamic systems. Linearization of nonlinear systems.  Solutions of state space equations. Lyapunov stability analysis.  Controllability and observability of linear systems. Pole placement technique design. Design of observers. Kalman filters. Introduction to the optimal design in control.

 

ECCE5443 Optimization Techniques in Engineering (3 Credits)        

(Prerequisite: MATH3171)

Linear programming. Simplex method. Duality theory. Network flow problems. Elements of integer programming. Nonlinear programming. A brief overview of interior point methods and global optimization techniques.

 

ECCE5452 Computer-Aided Instrumentation (3 Credits)                     

(Prerequisites: (ECCE4456 or ECCE4455), ECCE4227)

Introduction to fundamentals of measurement and Instrumentation systems with hardware and software componenets, Principles and implementation of interfacing the computer and stand-alone instruments with real world signals, Fundamentals of data acquisition with focus on PC-based operation of data acquisition systems, Enable design, Installation, Configuration, and Programming of data acquisition systems effectively, Design and implementation of Virtual Instruments.

 

ECCE5462 Electric Drives (3 Credits)

(Prerequisite: ECCE4466 or ECCE4467)

Electrical drives as key to industrialization, along with dc and ac machines modeling. DQ modeling of ac motors. Analogue control of dc motors and classical techniques. Digital control of dc motors and modern techniques. Voltage source and current source inverter fed induction motor drives. PWM techniques and speed control of electrical drives.

 

For information on other courses, listed in your degree plan offered by other department/college, Kindly click here.

 

In order to better utilize the available laboratory facilities, faculty expertise, and to address the industry interests, the Department of Electrical and Computer Engineering has always opted for the diversification of the student projects in four tracks areas. The projects are mostly design oriented having final end products or prototypes. The projects are carried out through two courses: Project I and Project II. The students go through a major design experience tackling current issues and propose solutions. They follow engineering design constraints as specified by ABET in the domain of  economic, environmental, sustainability, manufacturability, ethical, health and safety and social aspects.  A list of the recently offered projects in ECE department in four track areas is given below:

 

Electrical and Computer Engineering Final year projects, 2015-2016

 

    Computer Systems and Networks (CSN)

Sr. No.

Project Title

Student Name(s)

Supervisor(s)

1

Automatic Speed Control of Vehicles Using RFID in Restricted Zones

Malik Saif Ali Al- Saadi

Mohammed Zahir Saif Al Mamari

Naji Hamed Nasser Allouyahi

Dr. Medhat Hussein

Dr.Fahad Shiginah

2

RFID Based Employee Access Control in a Commercial Bank

Fahad Said Sulaiyam Al Abri

Malik Sulaiman Humood Al Ghawi

Hamood Khalifa Hamood Al Dhuhli

Dr. Medhat Hussein

Dr.Fahad Shiginah

3

Design of a Real-Time Interpreter for Arabic Sign Language

Ayuob Hamood Hamed Al Maha

Yarub Saif Mohamed Al Muharb

Issa Mohammed Said Al Subhi

Dr. Tariq Jamil

4

Augmented Reality for Deaf and Hard-of-Hearing Individuals

Sharifa Ali Ibrahim Ali Al Mamar

Balqees Salim Said Al Balushi

Khalsa Nasser Salim Al Shukri

Reem Ahmed Mahfood Al Riyami

Dr. Ahmed Al Maashri

5

Design of a SQU/Student Information System application for Android/iOS-based Smartphones

Haura Rabia Khalfan Al Balushi

Khuloud Ali Mohammed Al Zidi

Dr. Tariq Jamil

 

   Communication and Signal Processing (CSP)

Sr. No.

Project Title

Student Name(s)

Supervisor(s)

1

Design of a wireless remote water reading system

Raqiya Said Humaid Al Hinaai

Noura Abdullah Hamed Abdullah Al Breiki

Rajaa Nasser Saleh Al Rubaiai

Rajaa Sulaiman Al'Abri

Dr. Hassan Al-Lawati

Dr. Muhammad Al-Nadabi

2

Impact of RF and Static Electric/Magnetic Field on Seeds and Plants

Khalid Fahad Abdullah Al Raisi

Majid Salim Al Droushi

Faisal Musallam Al Kathi

Khalid Saleh Ali Salem Al Hinai

Dr. Zia Nadir

Dr. Rana Mumtaz (College of Agriculture)

3

Design of wireless finger print attendance system

Ahmed Humaid Said Al Hinai

Abdullah Said Nasser Al Farsi

Abdulrahim Said Al Alawi

Amrou Adil Ali Dashisha

Dr. Amir M. Abdulghani

4

Design of a Tracking System for SQU Library Books

Manar Saif Al Kindi

Latifa Khalid Ali Al Abri

Zainab Said Saleh Al Bahluli

Fatema Ali Almaashani

Dr. Naser Tarhuni

 

    Power Systems and Energy (PSE)

Sr. No.

Project Title

Student Name(s)

Supervisor(s)

1

Design of five phase induction motor for different stator connections

Humaid Salim Al Shukaili

Hafeed Marhoon Al Abri

Abdulrahman Rashid Al Sakiti

Mundhr Hamed Al Yahmadi

Dr. Mahmoud Ibrahim Masoud

2

Design of a PV System to Power A Greenhouse

Murshed Rashid Al Adawi

Faisal Khalaf Saif Al Subhi

Ibrahim Bakhit Said Kashoob

Ahmed Mahfoodh Al Wahaibi

Dr. Mohammed Al Badi

Dr. Rashid Al-Abri

3

Voltage Flicker Measurements Evaluation and Mitigation in Rusail Industrial Area

Salma Salim Suhail Aol Awaed

Aisha Mahmood Al Balushi

Marya Abdallah Ali Al Balushi

Dr. Mohammed Al Badi

Dr. Amer Al-Hani
Mr. Salem Al-Hani

4

Design a solar power supply kit for charging power banks (portable chargers)

Salim Abdallah Salim Allamki

Zakariya Rashid Al Abri

Abdallah Rashid Al Huseini

Dr. Rashid Al-Abri

5

Design a solar power auto irrigation system

Ibrahim Talib Al Shaqsi

Mustafa Abdullah Almufargi

Abdullah Hilal Said Al Shaqsi

Khalid Yahya Al Nabhani

Dr. Rashid Al-Abri

Dr. Hassan Yousef
Dr. Mohammed Al-Badi
Dr. Abdulrahim Al-Ismail
(College of Agriculture)

6

Load Frequency Control of Multi-Area Power System

Mohammed Abdullah Al Salmi

Ali Salim Al Yahyai

Mahmood Sulaiman Al Hinai

Dr. Hassan Yousef

7

Distance Protection Design of MSQ-Barka 220kV Transmission Line

Haitham Abdullah Al Ghafri

Mohammed Al Mahrooqi

Mohammed Said Al Saadi

Mahnad Harib Al Yaqoubi

Dr. Abdelsalam Elhaffar

Dr. Hisham M. Soliman

8

Effect of Current Transformer Performance on the Protection of Distribution Systems

Aid Nasser Sulaiman Al Farsi

Ali Saif Ali Mohammed Al Abri

Ali Mohammed Al Kalbani

Said Khalfan Saif Al Fari

Dr. Abdelsalam Elhaffar

Dr. Naser Tarhuni

9

Development of strategic plans and scenarios for the smart grid and their impact on Omani power sector

Abdullah Ali Al Shehhi

Amjad Rashid Al Omairi

Ahmed Ali Khamis Bani Araba

Mohamed Hamood Aljabri

Dr. Arif Malik

10

Design of Load frequency control of a microgrid

Mohammed Majed Al Abri

Ahmed Saoud Ahmed Al Toobi

Sultan Abdullah Al Mandhari

Dr. Hisham M. Soliman

11

Grid Interconnection between Oman and UAE

Abdulaziz Saif Al Dhamri

Abdullah Al Mukhaini

Prof. Ibrahim A. Metwally

 

 

    Electronics Instrumentation and Control (EIC)

Sr. No.

Project Title

Student Name(s)

Supervisor(s)

1

Remote object identification and collection using flying robot

Ali Musallam Said Kashoob Ahmed Hafeedh Al Hafeedh

Ali Ahmed Salim Al Basrawi

Dr. Hassan Yousef

Dr. Muhammad Shafiq

2

Smart Dolphins Protection system

Amal Sulaiman Al Hattali

Abir Said Abdullah Al Shukeili

Huda Abdullah Al Rasbi

Safiyah Ahmed Hafidh Alshaibi

Dr. Muhammad Shafiq

Dr. Muhammad Al-Nadabi

3

Green Energy Storage and Efficient Use

Khalil Ibrahim Al Ajmi

Saadullah Sulaiman Al Zakwani

Salim Khalifa Al Jabri

Asaad Salim Harib Al Shukaili

Dr. Muhammad Shafiq

Dr. Hassan Yousef

4

Design and Implementation of an Indoor Air quality monitoring system

Maha Khalfan Juma Al Kindi

Hajer Abdallah Al Mandhari

Dr. Lazhar Khariji

 

          Electrical and Computer Engineering Program Enrollment and Graduation Statistics

 

Academic

Year

Status

Enrollment Year

Total

Undergraduates**

Degree Awarded

(Bachelors)

1st*

2nd

3rd

4th

5th

2015 - 2016

FT

0

1

65

117

109

428

119

PT

-

-

-

-

-

-

2014 - 2015

FT

0

0

65

109

125

410

114

PT

-

-

-

-

-

-

2013 - 2014

FT

0

0

67

117

117

419

94

PT

-

-

-

-

-

-

2012 - 2013

FT

0

2

86

117

102

423

125

PT

-

-

-

-

-

-

2011- 2012

FT

0

3

101

100

121

449

114

PT

-

-

-

-

-

-

2010 - 2011

FT

2

11

94

114

120

506

111

PT

-

-

-

-

-

-

 

 

* Students have not yet selected programs

** Includes late students in year 6 and above

Note: The College doesn’t have any part-time (PT) students for undergraduate programs

 

              FT--full time

PT--part time

 
Course Code Course Title
ECCE2016 Circuit Analysis I
ECCE3016 Circuit Analysis II
ECCE3022 Electromagnetics I
ECCE3038 Elect. Measurements & Instrumentation
ECCE3142 Signals & Systems
ECCE3152 Electronics I
ECCE3206 Digital Logic Design
ECCE3258 Applied Engineering Programming
ECCE3352 Electrical Technology
ECCE4009 Eng. Design and Professional Skills
ECCE4022 Electromagnetics II
ECCE4082 Professional Skills
ECCE4122 Principles of Analog & Digital Comm.
ECCE4124 Digital Communications
ECCE4126 Principles of Digital Communications
ECCE4142 Digital Signal Processing
ECCE4158 Electronics II
ECCE4203 Advanced Logic Design
ECCE4213 Digital Electronics – Reliability and Testing
ECCE4227 Embedded Systems
ECCE4232 Introduction to Distributed & Parallel Systems
ECCE4242 Introduction to Computer Networks
ECCE4252 Data Structure & Algorithms
ECCE4253 Object Oriented Programming
ECCE4254 Operating Systems
ECCE4257 Applied Algorithms for ECE
ECCE4272 Artificial Intelligence
ECCE4282 Coding and Data Encryption
ECCE4312 Power System Analysis I
ECCE4316 Power System Analysis II
ECCE4358 Electrical Machines
ECCE4360 Renewable Energy Systems
ECCE4416 Linear Control Systems
ECCE4422 Digital Control Systems
ECCE4436 Industrial Control Systems Design
ECCE4455 Sensors and Actuators
ECCE4467 Power Electronics & Drives
ECCE5002 Selected Topics in ECE
ECCE5004 Eng. Management & Economics I
ECCE5005 Engineering Management & Economics II
ECCE5006 Biomedical Signal Processing
ECCE5007 Biomedical Instrumentation Engineering
ECCE5008 Project Management
ECCE5009 Project (Part I)
ECCE5099 Project (Part II)
ECCE5112 Antennas & Wave Propagation
ECCE5122 Communications Systems
ECCE5123 Optical Communications
ECCE5124 Wireless Communications
ECCE5132 Information Theory
ECCE5134 Selected Topics in Communications
ECCE5142 Image and Video Processing
ECCE5143 Advanced Digital Signal Processing
ECCE5160 Antenna Modeling and Measurement Techniques
ECCE5162 Microwave Engineering
ECCE5164 RF Comm. Circuits
ECCE5212 VLSI Design
ECCE5213 Fault-Tolerant Computing Systems
ECCE5214 Adv. Logic & Computer Interfacing
ECCE5215 Computing Systems for Engineering Applications
ECCE5222 Microprocessor Interfacing
ECCE5223 Adv. Embedded Systems Design
ECCE5224 Microprocessor Based Control Design
ECCE5231 Industrial Networks and Operating Systems
ECCE5232 Computer Architecture & Organ.
ECCE5233 Computer Architecture and Organization II
ECCE5242 Advanced Computer Networks
ECCE5243 Network Software Design & Programming
ECCE5252 Software Engineering
ECCE5265 Database Engineering and Applications
ECCE5282 Computer Network Security
ECCE5283 Cryptography, Security & e-Commerce
ECCE5291 Functional Verification of Hardware Designs
ECCE5292 Selected Topics in Computer Engineering
ECCE5302 Power Systems Protection
ECCE5303 Power Distribution System Engineering
ECCE5304 Power Stations
ECCE5312 Power System Control and Stability
ECCE5313 Electric Power Transmission System Engineering.
ECCE5314 Selected Topics in Power
ECCE5315 Smart Grid
ECCE5322 Electrical Power Systems Quality
ECCE5323 Power System Operation
ECCE5324 Power System Reliability and Planning
ECCE5332 High Voltage Engineering
ECCE5333 Power System Economics
ECCE5342 Electrical Engineering Material
ECCE5352 Generalized Machine Theory
ECCE5412 Mechatronics
ECCE5422 Selected Topics in Control Systems
ECCE5432 Programmable Logic Control Systems
ECCE5433 Modern Control Systems
ECCE5434 System Dynamics and Simulation
ECCE5443 Optimization Techniques in Engineering
ECCE5445 Control System Design
ECCE5452 Computer-Aided Instrumentation
ECCE5453 Mobile Robot Control
ECCE5462 Electric Drives
ECCE5464 Advanced Power Electronics