Sultan Qaboos University
 Centre for Preparatory Studies - Department of Mathematics and IT
 Mathematics for Sciences - FPMT0108
 EXIT TEST
 (Sample)

Instructions:

- This test is an on-line test, which contains 40 multiple choice questions.
- Attempt all questions. Time allowed is 90 minutes.
- Choose the most appropriate answer for each multiple choice question.
- Rough work done on the given extra sheet will not be graded.

1. Simplify the expression: $\frac{1}{x^{2}-2 x-3}-\frac{1}{x-3}$.
(A) $\frac{x}{(x-3)(x+1)}$
(B) $\frac{x}{(x-3)(x-1)}$
(C) $\frac{x}{(3-x)(x+1)}$
(D) $\frac{x}{(3-x)(x-1)}$
2. The center of the circle $x^{2}+y^{2}+4 x+4 y=1$ is
(A) $(2,2)$
(B) $(-2,-2)$
(C) $(4,4)$
(D) $(-4,-4)$
3. The line $y+2 x+1=0$ is perpendicular to the line
(A) $x-2 y+7=0$
(B) $x+2 y-1=0$
(C) $y-2 x-1=0$
(D) $y+2 x-1=0$
4. Find the solution set of the in equality: $\frac{1}{2}<\frac{2-3 x}{4}$
(A) $(-\infty, 0)$
(B) $(-\infty, 1]$
(C) $(1, \infty)$
(D) $[1, \infty)$
5. Find the range of the function $g(x)=2 \sqrt{x-1}+3$.
(A) $[2,+\infty)$
(B) $[3,+\infty)$
(C) $[2,+\infty)$
(D) $(-\infty, 3]$
6. Which one of the following polynomials is divisible by $(x+1)$?
(A) $P(x)=2 x^{56}+4 x^{32}-2$
(B) $P(x)=2 x^{29}+3 x^{11}-5 x$
(C) $\quad P(x)=x^{12}-7 x^{5}+x^{2}-2$
(D) $P(x)=x^{11}+4 x^{17}-7$
7. The domain of the function $f(x)=\ln (2-x)$
(A) $x>0$
(B) $x \geq 0$
(C) $x<-2$
(D) $x<2$
8. If $f(x)=x^{2}+1$, evaluate $f(x+5)$ and simplify.
(A) $f(x+5)=x^{2}+10 x+26$
(B) $f(x+5)=x^{2}+6$
(C) $f(x+5)=x^{2}-10 x+26$
(D) $f(x+5)=x^{2}+10 x+25$
9. Graph of $f(x)=|x|$ shifted to the right 6 units, and shifted upward 1 unit, then an equation of the final transformation is
(A) $g(x)=|x+1|-6$
(B) $g(x)=|x+6|-1$
(C) $g(x)=|x-6|+1$
(D) $g(x)=1-|x-6|$
10. Find the minimum value of the function $f(x)=7 x^{2}-28 x$.
(A) $f(2)=28$
(B) $f(-28)=-2$
(C) $f(-28)=2$
(D) $f(2)=-28$
11. Use $f(x)=2 x-8$ and $g(x)=4-x^{2}$ to evaluate $f(g(-1))$.
(A) -7
(B) -28
(C) -2
(D) -96
12. Assume f is one-to-one function. If $f(x)=3-6 x$, find $f^{-1}(33)$.
(A) 5
(B) -5
(C) 6
(D) -3
13. Which of the following equations does NOT define y as a function of x ?
(A) $x+|y|=3$
(B) $x^{2}+y=8$
(C) $y=\frac{2 x}{x-1}$
(D) $y-\sqrt{x+9}=12$
14. The Remainder in the division of $P(x)=6 x^{5}+4 x^{3}+x+8$ by $(x-2)$ is
(A) 232
(B) 233
(C) 237
(D) 234
15. Find a polynomial of degree five that has zeros: $-6,-2,0,2$, and 6 .
(A) $x^{5}-40 x^{3}-144 x$
(B) $x^{5}-40 x^{3}+144 x$
(C) $x^{5}+40 x^{3}+144 x$
(D) $x^{5}-40 x^{2}-144 x$
16. List all possible zeros given by the Rational Zeros Theorem for $P(x)=2 x^{5}+8 x^{3}+11 x^{2}-14$
(A) $x= \pm 1, \pm 2, \pm 7, \pm \frac{1}{31}$
(B) $x= \pm 1, \pm 2, \pm 7, \pm 14, \pm \frac{1}{32}$
(C) $x= \pm 1, \pm 2, \pm 7, \pm 14, \pm \frac{1}{2}, \pm \frac{7}{2}$
(D) $x= \pm 1, \pm 2, \pm 14, \pm \frac{1}{31}$
17. Find all real zeros of the polynomial $P(x)=x^{3}+6 x^{2}+7 x-4$
(A) $x=4, x=-4 \pm \sqrt{2}$
(B) $x=-4, \quad x=-1 \pm \sqrt{2}$
(C) $x=-1, \quad x=-4 \pm \sqrt{2}$
(D) $x=-4, \quad x=4 \pm \sqrt{2}$
18. Find the slant asymptote of the function $r(x)=\frac{x^{2}+10 x+24}{x+7}$.
(A) $y=x-1$
(B) $y=x+4$
(C) $y=x+3$
(D) $y=x-3$
19. The equation $\ln (1-x)=-1$ has the solution
(A) $x=e^{-1}-1$
(B) $x=1-e^{-1}$
(C) $x=1-e$
(D) No solution
20. Rewrite the expression $4 \log x+\frac{1}{2} \log y-3 \log z$ as a single logarithm.
(A) $\log \left(\frac{x^{4} \sqrt{y}}{z^{3}}\right)$
(B) $\frac{\log \left(x^{4} \sqrt{y}\right)}{\log z}$
(C) $\log \left(4 x+\frac{1}{2} y-3 z\right)$
(D) $\log \left(x^{4}+\sqrt{y}-z^{3}\right)$
21. Simplify: $\left(\log _{3} 7\right)\left(\log _{7} 13\right)$
(A) $\log _{3} 20$
(B) $\frac{3}{13}$
(C) $\frac{1}{7}$
(D) $\log _{3} 13$
22. Find the exponential function $f(x)=a^{x}$ whose graph is given.

(A) $f(x)=6^{x}$
(B) $f(x)=6^{x-1}$
(C) $f(x)=6^{-x}$
(D) $f(x)=-6^{x}$
23. Solve the logarithmic equation: $\log _{x}(2 x+24)=2$
(A) $x=-4,6$
(B) $x=6$
(C) $x=-4$
(D) $x=-6,4$
24. Radium- 221 has a half-life of 30 seconds. How long will it take for 95% of a sample to decay?
(A) 130 s
(B) 45 s
(C) $2 s$
(D) 100 s
25. Find $\sin \theta$ if $\cos \theta=-\frac{3}{5}$ and angle θ is in Quadrant III.
(A) $-\frac{12}{5}$
(B) $\frac{4}{5}$
(C) $-\frac{4}{5}$
(D) $-\frac{3}{5}$
26. The period of function $y=4 \sin \left(\frac{\pi}{2} x+\pi\right)$ is
(A) 4π
(B) π
(C) 2π
(D) 4
27. Use the substitution $x=\sin t$ to simplify the expression $\frac{x}{\sqrt{1-x^{2}}}$.(Assume $0 \leq x<\frac{\pi}{2}$)
(A) 1
(B) $\cos t$
(C) $\sec t$
(D) $\tan t$
28. A 25 -meter tree casts a shadow that is $25 \sqrt{3}$ meters long. What is the angle of elevation of the Sun?
(A) 60°
(B) 40°
(C) 30°
(D) 45°
29. The solution of the equation $e^{2 x}+2 e^{x}-35=0$ is
(A) 5
(B) $\ln 5$
(C) -7
(D) -7 and 5
30. Express the function $g(x)=\sin x+\sqrt{3} \cos x$ in terms of sine only.
(A) $g(x)=2 \sin (x+\pi / 3)$
(B) $g(x)=4 \sin (x-\pi / 6)$
(C) $g(x)=2 \sin (2 x+\pi)$
(D) $g(x)=2 \sin (x+\pi)$
31. The expression $(\tan \alpha-\tan \beta)$ is equivalent to
(A) $\frac{\cos (\alpha-\beta)}{\cos \alpha \cos \beta}$
(B) $\frac{\sin (\alpha-\beta)}{\cos \alpha \cos \beta}$
(C) $\frac{\sin (\alpha+\beta)}{\cos \alpha \cos \beta}$
(D) $\frac{\sin (\alpha+\beta)}{\cos \alpha \sin \beta}$
32. Rewrite the expression $\sin \left(\cos ^{-1} x\right)$ as an algebraic expression in term of x.
(A) $\sqrt{x^{2}-1}$
(B) $\sqrt{1-x^{2}}$
(C) $1-x$
(D) $x-1$
33. Find all solutions of the equation $2 \cos x \cot x-\cot x=1-2 \cos x$ in the interval $[0,2 \pi)$
(A) $x=\frac{\pi}{3}+2 k \pi, \frac{5 \pi}{3}+2 k \pi, \frac{\pi}{4}+k \pi$
(B) $x=\frac{\pi}{3}+2 k \pi, \frac{5 \pi}{3}+2 k \pi, \frac{\pi}{4}+2 k \pi$
(C) $x=\frac{\pi}{3}, \frac{5 \pi}{3}, \frac{\pi}{4}$
(D) $x=\frac{\pi}{3}, \frac{5 \pi}{3}, \frac{3 \pi}{4}, \frac{7 \pi}{4}$
34. In a triangle, let a, b, and c be the sides opposite to the angles A, B, and C respectively. Use the Law of cosine to find B if $a=1, b=\sqrt{3}$, and $c=2$.
(A) 30°
(B) 60°
(C) 45°
(D) 90°
35. Which of the following is the graph of the polynomial function $f(x)=x^{2}\left(4-x^{2}\right)$?

(A)

(B)

(C)

(D)
36. A circular arc of length 18 meters subtends a central angle of 135°. Find the radius of the circle.
(A) $\frac{12}{\pi}(m)$
(B) $\frac{18}{\pi}(m)$
(C) $\frac{6}{\pi}(m)$
(D) $\frac{24}{\pi}(m)$
37. If $f(x)=\sqrt{x+6}$ and $g(x)=\frac{x+9}{x-1}$, find the domain of function $\left(\frac{f}{g}\right)(x)$.
(A) $[-6,1) \cup(1, \infty)$
(B) $(-6,1) \cup(1, \infty)$
(C) $(-9,1) \cup(1, \infty)$
(D) $[-6,+\infty)$
38. The estimated population of Oman (in millions) can be approximated by the model $P=3.69 e^{0.052 t}$, where t is the number of years after 2013. Predict the population of Oman for the year 2023.
(A) 9.16
(B) 7.20
(C) 6.21
(D) 38.87
39. In a sample of 12 observations, the smallest observation is increased by 60 . Then the mean will be
(A) remain the same
(B) increase by 12
(C) increase by 60
(D) increase by 5
40. A small school bus contains eight boys and ten girls. If two children are ill, what is the probability that at least one of them is a girl?
(A) $\frac{28}{153}$
(B) $\frac{125}{153}$
(C) $\frac{16}{153}$
(D) $\frac{27}{306}$

Mathematics for Sciences - FPMT0108 EXIT TEST

(Sample)
ANSWER KEY

Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9	Q10
\mathbf{C}	\mathbf{B}	\mathbf{A}	\mathbf{A}	\mathbf{B}	\mathbf{B}	\mathbf{D}	\mathbf{A}	\mathbf{C}	\mathbf{D}
Q11	Q12	Q13	Q14	Q15	Q16	Q17	Q18	Q19	Q20
\mathbf{C}	\mathbf{B}	\mathbf{A}	\mathbf{D}	\mathbf{B}	\mathbf{C}	\mathbf{B}	\mathbf{C}	\mathbf{B}	\mathbf{A}
Q21	Q22	Q23	Q24	Q25	Q26	Q27	Q28	Q29	Q30
$\mathbf{D ~}$	\mathbf{A}	\mathbf{B}	\mathbf{A}	\mathbf{C}	\mathbf{D}	\mathbf{D}	\mathbf{C}	\mathbf{B}	\mathbf{A}
Q31	Q32	Q33	Q34	Q35	Q36	Q37	Q38	Q39	Q40
\mathbf{B}	\mathbf{B}	\mathbf{D}	\mathbf{B}	\mathbf{B}	\mathbf{D}	\mathbf{A}	\mathbf{C}	\mathbf{D}	\mathbf{B}

