

SULTAN QABOOS UNIVERSITY COURSE OUTLINE

PROGRAM: Soils, Water & Agricultural Engineering

1.	Course Code	SWAE3308		
2.	Course Title	Instrumentation & Control Systems		
3.	Credits	3CR, 12 CP, 6 ECTS		
4.	Pre-requisite Course(s)	Calculus I (MATH2107), Physics I (PHYS210 (PHYS2107)	1) or Physics for Engineering	
5.	Co-requisite Course(s)	N/A		
6.	Equivalent Course(s)	None		
7.	Incompatible Course(s)	None		
8.	Course Category	University Requirement	University Elective	
		College Requirement	College Elective	
		Department Requirement	Department Elective	
		Specialization Requirement	Specialization Elective	
		Other (specify):		
9.	Course Owner	College: CAMS	Department: SWAE	
10.	Course Type		Lecture/Lab	
		Lecture/Seminar	Lecture/Studio	
		Lecture/Tutorial	Lecture/Lab/Tutorial or Seminar	
			Laboratory (Practical)	
		Field or Work Placement	Studio	
		Seminar Seminar	Internship	
		Workshop	Project	
11.	Language of Instruction	English		

12. Course Description

This three-credit engineering course introduces students to design of instrumentation and control systems. Once introduced to basic measurements of physical and engineering parameters, such as temperature, humidity, flow, moisture, pressure, speed, radiation, etc and to their terminology and characteristic, students will learn 1) how common sensors work and how they connect to modular acquisition decks of analog and counter channels 2) how calibration of measurement systems are made and 3) how to program a control application which triggers a relay connected to an actuator (light, solenoid, electrical motor, pump). The students will learn also about microcontrollers and their applications. On completion of the course students will 1) have a good understanding of the theory behind instrumentation and control systems 2) be able to carry out calibration of measurement systems and 3) be able to design simple datalogging and control systems.

13. Teaching/Learning Strategies

14. Assessment Components and Weight [%]				
Quizzes 10%	Practical 5%	Other (specify):		
Homework assignments 5%	Project 20%			
\square In-term examination(s) 20%	Final examination 40%			
15. Grading Method				
A-F Scale Pass/Not passed				
16. Textbook(s) and Supplemental Material				
Textbooks: Industrial instrumentation and process control by W. C. Dunn. 2005. McGraw Hill.				
Reference Books: (These books are available at SQU library):				

- 1. Digital and analogue instrumentation : testing and measurement by Kularatna, N. TK7878 .K84 2003
- 2. Instrumentation fundamentals for process control by DeSa, Douglas O. J. TP155.75 .D47 2001

- 3. Digital control system analysis and design by Phillips, Charles L. TJ223 .M53 P47 1995
- 4. Basic control system technology by Chesmond, C. J. TJ213 .C486 1990A

17. Matching Course Objectives with Program Outcomes and SQU Graduate					
A	ttributes SQU Graduate Attributes				
 apply the knowledge and skills relevant to the specialization communicate effectively and use information and communication technologies critically analyze complex information and present it in simple clear manner work ethi intellectuat teamwork 		 interpersona alignment v labour mark life and in li skills and v learning an learning and work ethics intellectual 	and positive values, and independence and autonomy kills and display potential	qualities, t their na and t responsibl communit be n	uates should od citizenship be conscious of tional identity be socially de, engage in y affairs and hindful of rary issues.
#	Intended Student Learning Outcome /Course Learning Objective		Relevant Program Outcome(s)		Applicable Attribute(s)
1.	To make students have a good under theory behind instrumentation and c	erstanding of the	- An ability to apply mathematics, science and eng	knowledge of gineering.	A1, B2
2.	Introduce students to common sense work and how they connect to mode decks of analog and counter channe	ors and how they ular acquisition	mathematics, science and eng - An ability to design a system or process to meet desired realistic constraints such as environmental, social, poli health and safety, manufact sustainability.	An ability to apply knowledge of athematics, science and engineering. An ability to design a system, component, r process to meet desired needs within ealistic constraints such as economic, nvironmental, social, political, ethical, ealth and safety, manufacturability, and	
3.	Enable the students to carry out calibration of measurement systems and design datalogging and control systems.				A1, B3
4.	Enable the students to use a control application program which triggers a relay connected to an actuator (light, solenoid, electrical motor, and pump).		 An ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability. An ability to identify, formulate, and solve engineering problems. An ability to use the techniques, skills, and modern engineering tools necessary for engineering practice. 		A1, A2, A3
5.	Encourage students to work in teams to perform the lab and project work sessions.				B1, B4, C

6.		
7.		
8.		
9.		
10.		
11.		
12.		
13.		
14.		
15.		
16.		
17.		
18.		
19.		
20.		

16. Student Responsibilities

It is the student's responsibility to know and comply with all University Academic Regulations relevant to participation in this course. These regulations specifically include attendance requirement and students' academic code of conduct.

For attendance, it is the student's responsibility to be punctual and to attend all classes.

Students are expected to perform their work with honesty and avoid any academic misconduct, which is defined as the use of any dishonest or deceitful means to gain some academic advantage or benefit. This can take many forms, including but not limited to, the following: copying, plagiarism, collusion and forging documents. For full details, please refer to the Undergraduate Academic Regulations and to the Student Academic Misconduct Policy.

Additionally, this course requires that you:

COURSE INFORMATION			
Course Code SWAE3308 Course Title Instrumentation and Control Systems			
Semester/ Year	Fall 2018	Section(s)	10
Day, Time, and Place SUN (12:00 - 2:00, A13), MON (12:00 - 2:00, AGR0016), TUE (12:00 - 2:00, AGR0016)			
Course Coordinator Talal Al-Shikaili			
Office Location	Office #234, 2 nd floor	Office Hours	SUN & TUE 11:00 - 12:00
Office Tel. Ext.	Office Tel. Ext. 1212 Email talals@squ.edu.om		talals@squ.edu.om

A	Tentative Schedule				
Week	Lecture #	Topic/Material to be covered	Assessment		
1		Introduction to SWAE3308			
2	Lec. 1 Chap. 1	Introduction Definition of instrumentation & Control Systems Process control loop Elements of a control loop Accuracy of devices (instruments)			
3	Lec. 2 Chap. 2	Electrical Components Resistance Capacitance Inductance	HW1 Quiz 1		
4	Lec. 3 Chap. 4	Electronics Analog Circuits Digital Circuits			
5	Lec. 4 Chap. 8	Temperature and Heat Concepts, formulas, measuring devices and applications	HW2		
6	Lect. 5 Chap. 8	Temperature and Heat: Continue	Quiz 2		
7	Lect. 6 Chap. 7	Flow: Concept, measurements, instruments, and applications			
8	Lec. 7	Review & Midterm	Mid-Term Exam		
9	Lec. 8	Microcontrollers NI hardware & LabView Software Arduino			
10	Lec. 9 Chap. 5	Pressure: Concept, measurements, instruments, and applications	HW3		
11	Lec. 10 Chap. 9	Humidity : Concept, measurements, instruments, and applications			
12	Lec. 11 Chap. 9	Humidity: Continue			
13	Lec. 12 Chap. 9	Measurement of PH, Density, Viscosity, & other variables	HW4		
14	Lec. 13	Project demonstration & presentation	Quiz 3		
15	Lec. 14	Course Revision			