COURSE OUTLINE TEMPLATE

SULTAN QABOOS UNIVERSITY

COLLEGE OF SCIENCE

BACHELOR OF SCIENCE IN CHEMISTRY COURSE OUTLINE

Other logo

I. COURSE INFORMATION					
COURSE CODE	СНЕМ2101				
COURSE TITLE	GENERAL CHEMISTRY	ΥI			
OMAN QUALIFICATION	5				
FRAMEWORK (OQF) LEVEL					
CREDIT HOURS	4				
CONTACT HOURS	6				
Pre-Requisites	FPEL0560 OR FPEL06	00 or 1	FPEL0601 or FP	EL0602 FPEL0603 OR	
The regulation	FPEL0604 AND (FPM7	T0105 (OR FPMT0108 OR	FPMT0109)	
Co-Requisites	X				
EQUIVALENT COURSES	X				
INCOMPATIBLE COURSES	X				
	☐ University Requirement		☐ University I	Elective	
	☐ College Requirement		☐ College Ele	ctive	
	□ Department		Dan autus au	Danartmant Floative	
COURSE CATEGORY	Requirement		☐ Department Elective		
	☐ Specialization		☐ Specialization Elective		
	Requirement		□ Specianzation Elective		
	☐ Other (specify):				
COURSE OWNER	College: Science		Department: Chemistry		
COURSE OWNER	Center:		Unit:		
DELIVERY MODE		□ B1	ended	☐ Online	
COURSE TYPE	☐ Lecture		□ Lecture/Lab		

	☐Lecture/Seminar	☐ Lecture/Studio		
	☐ Lecture/Tutorial	☐ Lecture/Lab/Tutorial or	Seminar	
	☐ Tutorial	☐ Laboratory (Practical)		
	☐ Field or Work Placement	☐ Studio		
	☐ Seminar	☐ Internship		
	☐ Workshop	☐ Project		
	☐ Thesis	☐ Other (specify):		
LANGUAGE OF INSTRUCTION	English			
	This course is the first of two Ge	neral Chemistry courses. It is a	basic course	
	primarily intended for majors in	chemistry and other related dep	partments. It	
	includes experiments related to b	asic chemical principles. It teac	hes students	
	how to think like scientists and c	hemists so that they can apply t	he problem-	
	solving method to other aspects of their lives. They use the tools to become			
	critical thinkers, ask questions, use rules and models, and properly evaluate			
COURSE DESCRIPTION	the outcome. The topics covered include chemical foundations; atoms,			
	-			
	molecules, and ions; stoichiometry; types of chemical reactions and solution			
	stoichiometry; atomic structure and periodicity; general concepts of bonding;			
	and thermochemistry. The lab activities are designed to help students develop			
	the practical skills required for higher-level chemistry courses while also			
	expanding on the principles taught in lectures.			
	☐ Augmented Reality	☐ Flipped Classroom		
	⊠ Blended Learning	⊠ Problem-Based Learnin	g	
TEACHING AND LEARNING	□ Discovery-Based	Dusingt Daged Learning		
STRATEGIES	Learning	☐ Project-Based Learning		
	☐ Student-Led Learning	☐ Team-Based Learning		
	☐ Work-Based Learning	☐ Other (specify):		
	☑ In-term exams (30%)	⊠ Quizzes (10%)		
ASSESSMENT COMPONENT AND	☐ Homework (%)	☐ Project (%)	Other	
WEIGHT	⊠ Final examination (49%)	⊠ Practical/ Lab (20%)	(specify): (%)	
TEXTBOOKS AND EDUCATIONAL	Textbook: Chemistry, Zumda	hl S. S. & Zumdahl S. A.	9 th Edition,	
	Brooks/ Cole, Belmont (CA, U	USA), 2014; Lecture notes; la	ab manuals	
MATERIAL	handouts and videos.			
	I and the second se			

GRADING METHOD	⊠ A-F Scale		☐ Pass/Not Pass ☐ Other (specify):
GRADING METHOD DESCRIPTION			
	Range	Letter	Grade Description
	>85	A	Exceptional performance: All course
	85-81	A-	objectives achieved and met in a consistently outstanding manner.
	81-77	B+	Very Good Performance: The majority
	77-73	В	of the course objectives achieved
	73-68	В-	(majority being at least two-thirds) and met in a consistently thorough manner.
A-F GRADING SCALE:	68-64	C+	Satisfactory Performance: At least
	64-66	С	most of course objectives have been
	60-55	C-	achieved and met satisfactorily
	55-50	D+	Minimally Acceptable Performance:
	50-45	D	The course objectives met at a minimally acceptable level.
	<45	F	Unacceptable performance: The course objectives not met at a minimally acceptable level.
PASS/NOT PASS:			
OTHER:			

II. SEMESTER INFORMATION			
SEMESTER/YEAR	Fall/2024	SECTION(S)	01 to 08
DAY AND TIME		VENUE(S)	
COURSE COORDINATOR	Usama Alshana	COURSE TEAM	Isehaq Al-Nafai
			Amal Al-Sabahi
			Reem Al Shidhani
			Beena Philip
			Muna Al-Mandhary
			S. Naheed Furqan
			Sindhu Nair
COORDINATOR OFFICE	2024	OFFICE HOURS	To be determined

			later
COORDINATOR EXTENSION	2437	COORDINATOR EMAIL	u.alshana@squ.edu.om

III. ALIGNMENT OF COURSE LEARNING OUTCOMES (CLO), PROGRAM LEARNING OUTCOMES (PLO), GRADUATE ATTRIBUTES (GA), AND OMAN QUALIFICATION FRAMEWORK (OQF) CHARACTERISTICS

CLO	PLO	SQU GA	OQF CHARACTERISTICS (LEVEL)
1. Perform scientific measurements/conversions	1	1	1
applying rules of significant figures, analyze	2	2	2
quality of scientific data and classify matter	3		6
2. Know atomic structure, molecules and ions, the	1	1	1
periodic table and name simple ions/compounds	2	2	2
	3		6
3. Apply the stoichiometry concept to chemical	1	1	1
equations	2	2	2
	3		
4. Distinguish types of chemical reactions and use	1	1	1
solution stoichiometry	2	2	2
	3		
5. Understand the theories and principles that led to	1	1	1
the development of atomic structure	2	2	2
	3		
6. Understand the general concepts of chemical	1	1	1
bonding	2	2	2
	3		
7. Understand and apply some general concepts of	1	1	1
thermochemistry	2	2	2
	3		

IV 4	COURSE LEARNING OUTCOMES (CLOS) AND ASSESSMEN	NT CDITEDIA AND METHODS (FOD FACH
CLO		VI CRITERIA AND METHODS (FOR EACH
)1: PERFORM SCIENTIFIC MEASUREMENTS/CONVERSION	IS APPLYING RILLES OF SIGNIFICANT FIGURES.
	LYZE QUALITY OF SCIENTIFIC DATA AND CLASSIFY MAT	<i>,</i>
	ESSMENT CRITERIA (TO ACHIEVE THIS OBJECTIVE, THE	ASSESSMENT METHODS
	DENT MUST)	
A)	Perform scientific measurements and mathematical	Lab experiment/report, Quiz and Exams
	operations applying rules of significant figures	
B)	Analyze the quality of scientific data in terms of	Lab experiment/report, Quiz and Exams
	accuracy and precision and recognize types of errors	
C)	Classify matter and identify chemical and physical	Lab experiment/report, Quiz and Exams
	properties of matter	
CLO	22: Know atomic structure, molecules and ion	NS, THE PERIODIC TABLE AND NAME SIMPLE
IONS	S/COMPOUNDS	
Assi	ESSMENT CRITERIA (TO ACHIEVE THIS OBJECTIVE, THE	ASSESSMENT METHODS
STUI	DENT MUST)	
A)	Calculate the number of sub-atomic particles in	Quiz and Exams
	atoms/ions and name them	
B)	Distinguish between chemical reactions and physical	Lab experiment/report, Quiz and Exams
	processes and exemplify them	
C)	Name the elements in the periodic table, write their	Quiz and Exams
	chemical symbols and describe some periodic trends	
D)	Make and record observations of chemical reactions and	Lab experiment/report and Exams
	represent reactions with chemical equations	
	33: APPLY THE STOICHIOMETRY CONCEPT TO CHEMICA	
ASS	ESSMENT CRITERIA (TO ACHIEVE THIS OBJECTIVE, THE	ASSESSMENT METHODS
STUI	DENT MUST)	
A)	Determine chemical formulae of compounds using the	Lab experiment/report and Exams
	mole concept	
B)	Carry out stoichiometric calculations for chemical	Lab experiment/report and Exams
	reactions	
C)	Find percent composition of compounds to determine	Lab experiment/report and Exams
	their empirical and molecular formulae	

D)	Balance chemical equations and apply stoichiometric	Lab experiment/report and Exams
	calculations to find amounts of reactants and products	
	(yield)	
CLO	04: DISTINGUISH TYPES OF CHEMICAL REACTIONS AND U	USE SOLUTION STOICHIOMETRY
ASS	ESSMENT CRITERIA (TO ACHIEVE THIS OBJECTIVE, THE	ASSESSMENT METHODS
STUI	DENT MUST)	
A)	Describe the nature of aqueous solutions as strong and	Exams
	weak electrolytes	
B)	Prepare standard solutions, carry out dilutions and	Lab experiment/report and Exams
	analyze the composition of substances in solution	
C)	Identify different types of reactions and perform	Lab experiment/report and Exams
	pertinent calculations of amounts of	
	substances/mixtures	
D)	Carry out chemical reactions and perform titrimetric	Lab experiment/report and Exams
	analyses	
E)	Balance oxidation–reduction reactions	Exams
CLO	D5: UNDERSTAND THE THEORIES AND PRINCIPLES TH	AT LED TO THE DEVELOPMENT OF ATOMIC
STRU	UCTURE	
	ESSMENT CRITERIA (TO ACHIEVE THIS OBJECTIVE, THE	ASSESSMENT METHODS
	DENT MUST)	
A)	Enumerate and explain the theories and principles that	Exams
	led to the development of the atomic structure	
B)	Draw and describe atomic orbitals and assign them	Exams
	quantum numbers	
C)	Write electronic configurations for atoms and	Exams
	monatomic ions and explain some trends in the periodic	
	table	
	O6: UNDERSTAND THE GENERAL CONCEPTS OF CHEMICA	
A)	Understand the types of chemical bonds and bonding	Exams
B)	Draw Lewis structures, predict shapes of simple	Exams
	molecules and polyatomic ions and assign polarity	
C)	Explain some exceptions to the Octet Rule	Exams
	Draw resonance structures and assign formal charges to	

	atoms	
E)	Draw molecular structures using the VSEPR model, name their shapes and determine bond angles	Exams
CLO	77: UNDERSTAND AND APPLY SOME GENERAL CONCEPTS	S OF THERMOCHEMISTRY
A)	Understand the nature of chemical energy and work	Exams
B)	Measure heat of chemical reactions using calorimetry and apply the first law of thermodynamics	Exams
C)	Determine/calculate heat of reactions using Hess's law and/or standard enthalpies of formation of substances	Exams

V. Coul	V. COURSE CONTENT AND SCHEDULE				
WEEK	LECTURES #	TOPICS/ SUBJECTS	READINGS/	REMARKS (e.g.,	
			CHAPTERS	ASSESSMENTS)	
1	1 & 2	Chemical Foundations	Chapter 1	Quiz 1, Test 1 & Final	
2	1 & 2	Chemical Foundations	Chapter 1	Quiz 1, Test 1 & Final	
3	1 & 2	Atoms, Molecules, and	Chapter 2	Lab report, Quiz 1, Test 1	
		Ions		& Final	
4	1	Atoms, Molecules, and	Chapter 2	Lab report, Quiz 1, Test 1	
	2	Ions	Chapter 3	& Final	
		Stoichiometry			
5	1 & 2	Stoichiometry	Chapter 3	Lab report, Quiz 1, Test 1	
				& Final	
6	1	Stoichiometry	Chapter 3	Lab report, Test 1 & Final	
	2	Types of Chemical	Chapter 4		
		Reactions and Solution			
		Stoichiometry			
7	1 & 2	Types of Chemical	Chapter 4	Lab report, Test 1 & Final	
		Reactions and Solution			
		Stoichiometry			
8	1	Types of Chemical	Chapter 4	Lab report, Test 1 & Final	

	2	Reactions and Solution	Chapter 18	
		Stoichiometry		
		Electrochemistry		
9	1 & 2	Atomic Structure and	Chapter 7	Test 2 & Final
		Periodicity		
10	1 & 2	Atomic Structure and	Chapter 7	Test 2 & Final
		Periodicity		
11	1	Atomic Structure and	Chapter 7	Test 2 & Final
	2	Periodicity	Chapter 8	
		Bonding: General		
		Concepts		
12	1 & 2	Bonding: General	Chapter 8	Test 2 & Final
		Concepts		
13	1	Bonding: General	Chapter 8	Test 2 & Final
	2	Concepts	Chapter 9	
		Covalent Bonding:		
		Orbitals		
14	1 & 2	Thermochemistry	Chapter 6	Final Exam
15	1 & 2	Thermochemistry	Chapter 6	Final Exam

VI. ADDITIONAL INFORMATION (e.g., RUBRICS, etc.)

_

VII. STUDENTS RESPONSIBILITIES

It is the student's responsibility to know and comply with all University Academic Regulations relevant to participation in this course. These regulations specifically include attendance requirements and student academic code of conduct.

ACADEMIC	The University expects the students to approach their academic endeavors with the		
Integrity	highest academic integrity. Please refer to the Undergraduate Academic		
	Regulations.		
ADD AND DROP	Students who wish to drop or add the course should review the Undergraduate		
	Academic Regulations.		
ATTENDANCE	Sultan Qaboos University has a clear requirement for students to attend courses as		
	detailed in the Undergraduate Academic Regulations.		
ASSESSMENT	To ensure the provision of a sound and fair assessment and grading, please review		
AND GRADING	the Undergraduate Academic Regulations.		
GRADE APPEAL	Students who wish to appeal their grades should review the Undergraduate		
	Academic Regulations.		
CLASSROOM	Students are expected to dress professionally during class time as required by the		
POLICIES	University. Use of phones or any other electronic devices in the classroom during		
	class time is strictly prohibited. Unauthorized use may lead to faculty member		
	confiscation of the device for the remainder of the class. Behavior that persistently		
	or grossly interferes with classroom activities is considered disruptive behavior and		
	may be subject to disciplinary action. A student responsible for disruptive behavior		
	may be required to leave the class.		
LATE AND	Students are required to meet the course objectives by submitting coursework no		
MAKE-UP	later than the assigned due date. Students may be allowed to submit late work if		
Work	approved by the Course Coordinator. Assignments submitted after the due date may		
	be penalized.		
MISSED	All quizzes, tests, clinical evaluations, and exams must be completed by the date		
EVALUATIONS	they are assigned. If a quiz, test, or exam is missed due to a documented emergency		
	situation (e.g., medical emergency, death in the immediate family), it is the student's		
	responsibility to contact the instructor and/or Course Coordinator. Makeup exams		
	will not be given for assessment criteria less than 25% of the course grade, but marks		
	will be normalized over the other assessment components for students with valid		
	proof of emergency situation (e.g. medical sick leave)		
OTHER	-		

Course Outline Appendix

A. PROGRAM LEARNING OUTCOMES

- 1. Perform scientific measurements and mathematical operations applying rules of significant figures
- 2. Analyze the quality of scientific data in terms of accuracy and precision and recognize types of errors
- 3. Classify matter and identify chemical and physical properties of matter
- 4. Distinguish between chemical reactions and physical processes, and exemplify them
- 5. Name the elements in the periodic table, write their chemical symbols and describe the periodic trends
- 6. Make and record observations of chemical reactions and represent reactions with chemical equations
- 7. Determine chemical formulae of compounds using the mole concept
- 8. Carry out stoichiometric calculations for chemical reactions
- 9. Prepare standard solutions, carry out dilutions and analyze the composition of substances in solution
- 10. Identify different types of reactions and perform pertinent calculations of amounts of substances
- 11. Carry out chemical reactions and perform titrimetric analyses
- 12. Measure heats of reaction using calorimetry and apply the first law of thermodynamics
- 13. Determine heats of reaction using Hess's law or standard enthalpies of formation of substances
- 14. Enumerate and explain the theories and principles that led to the development of atomic structure
- 15. Draw and describe atomic orbitals, and assign them quantum numbers
- 16. Write electron configurations for atoms and monatomic ions and explain the periodic trends
- 17. Draw Lewis structures and predict shapes of simple molecules and polyatomic ions, and assign polarity

- 18. Describe and explain chemical bonding in terms of hybridization and types of chemical bonds
- 19. Integrate scientific knowledge to make informed judgements and solve problems
- 20. Use scientific equipment competently, interpret data and judge the quality of measurements.

B. SQU GRADUATE ATTRIBUTES

- 1. Cognitive Capabilities
- 2. Skill and Professional Capability
- 3. Effective Communication
- 4. Autonomy and Leadership
- 5. Responsibility and Commitment
- 6. Development and Innovation

C. OQF CHARACTERISTICS

- 1. Knowledge
- 2. Skills
- 3. Communication, Numeracy, and Information and Communication Technology Skills.
- 4. Autonomy and Responsibility
- 5. Employability and Values
- 6. Learning to learn