College of Science

Department of Chemistry

Course Code: CHEM-4437 Course Title: Electrochemistry

General Information

Number of Credits:	3
Instructional Format:	Lectures (2 h/w) + Tutorial (2 h/w)
Contact Hours/Week:	4
Prerequisite:	CHEM-3333 or CHEM-3330
Co-requisite:	NONE
Assessment:	Mid-term Exams (40%) + assignments (10%) + Final Exam (50%).
Grading:	(A–F)
Textbook:	Allen J. Bard and Larry R. Faulkner, Electrochemical methods:
	Fundamentals and Applications, 2 nd edition, John Wiley, 2001
References (optional):	D. Brynn Hibbert, Introduction to Electrochemistry, MacMillan Physical
	Science Series, 1993.

1. Course Description

This course will introduce students to the fundamental and application of modern electrochemistry. Applying electrochemical theories to describe events occurred at the electrode surface. Using new electrochemical terminologies, new electrochemical methods and variety of electrodes employed for different applications. Introduce electrochemistry as an important tool in industrial, biological, medical and environmental applications.

2. Course Objectives

This course seeks to:

- 1. Set a firm foundation in modern electrochemistry
- 2. Present electrochemistry as an effective tool for analytical measurements
- 3. Describe chemical reactions according to electrochemical theories
- 4. Depict electrochemical methodology terms and methods
- 5. Evaluate some thermodynamic and kinetic parameters

3. Learning Outcomes

(a) Knowledge

On successful completion of this course, students will be able to:

- 1. Distinguish and define Faradaic and Non–Faradaic processes, double layer capacitance and charging current, ideal and non-ideal polarized electrodes.
- 2. Demonstrate the factors affecting the rates of electrode reactions and generalize mass transfer controlled reactions.
- 3. Generalize the importance of Tafel plot to evaluate the exchange current, the charge transfer resistance and the transfer coefficient.
- 4. Classify potential step under diffusion control and derive the diffusion current (Cottrell equation) for planar and spherical electrodes.
- 5. Summarize potential sweep voltammetry for reversible and totally irreversible processes, and predict the effect of scan rate, charging current and double layer capacitance on the peak current.

6. Apply the convective-diffusion (Levich and Koutechy-Levich) equations using RDE or/and RRDE to evaluate some thermodynamic and kinetic parameters.

(b) Skills and Attitudes

This elective course is offered without lab component. Therefore, the above subject specific skill may be considered as a general skill since the tutorial lecture will often be used to demonstrate a number of methods and used to demonstrate a number of methods and applications.

Also, students are involved in writing a single assignment on the application of electrochemistry in industrial, environmental, biological and clinical applications. This would broaden their knowledge and understanding for utilizing electrochemistry in the above applicable themes.

4. Assessment

Learning	Assessment criteria				
outcome:	Α	В	С	D	F
(1)	Showing mastery	Having a good	Having a	Having a less	Demonstrating a
Electrochemical	understanding of	understanding of	satisfactory	satisfactory	very weak in
terminologies	various	various	understanding of	understanding of	understanding of
and definitions	terminologies	terminologies	various important	various important	various important
			terminologies	terminologies	terminologies
(2) Generalize	Showing mastery	Having a good	Having a	Having a less	Showing a weak
mass transport	understanding of	understanding of	satisfactory	satisfactory	understanding of
modes and factor	mass transport	mass transport	understanding of	understanding of	mass transport
affecting the rate	controlled	controlled	mass transport	mass transport	controlled
of electrode	reactions and	reactions and a	controlled	controlled	reactions and an
reaction	excellently	good ability to	reactions and an	reactions and an	average ability to
	demonstrate the	demonstrate the	average ability to	average ability to	demonstrate the
	surface	surface	demonstrate the	demonstrate the	concentration
	concentration	concentration	concentration	concentration	profile as a
	profile as a	profile as a	profile as a	profile as a	function of time.
	function of time.	function of time.	function of time.	function of time.	
(3) Electrode	Demonstrating a	Showing a good	Having an	Having a less	Showing a weak
kinetics using	mastery	understanding of	average	satisfactory	understanding of
well-known	understanding of	electrode kinetics	understanding of	understanding of	electrode kinetics
electrochemical	electrode kinetics	and ability to	electrode kinetics	electrode kinetics	and weak ability
theories.	and ability to	evaluate some	and average	and less ability to	to evaluate a
	evaluate a range	reaction	ability to	evaluate a range	range of
	of chemical	parameters.	evaluate reaction	of chemical	chemical
	parameters.		parameters.	parameters.	parameters.
(4) & (5)	Demonstrating a	Demonstrating a	Demonstrating an	Demonstrating a	Demonstrating a
Potential step and	mastery	good	average	less satisfactory	weak understand-
potential sweep	understanding of	understanding of	understanding of	understanding of	-ing of both
methods and	both potential	both potential	both potential	both potential	potential
their applications	techniques,	techniques,	techniques with	techniques with	techniques with
for planar and	applied their	applied their	their applied	their applied	their applied
spherical	mathematical	mathematical	mathematical	mathematical	mathematical
electrodes.	equations,	equations,	equations, figure	equations, a lack	equations, a lack
	excellently figure	describe the	out the difference	of describing the	of describing the
	out the difference	difference	between	difference	difference
	between	between	reversible and	between	between
	reversible and	reversible and	irreversible	reversible and	reversible and
	irreversible	irreversible	processes,	irreversible	irreversible
	processes and	processes,	evaluate	processes, and	processes, and
	diffusion	evaluate	annusion	diffusion	diffusion
	and	and	coefficient.	annusion	annusion
	coefficient.	coefficient.	1	coefficient.	coefficient.

(6) Application of rotating disk electrodes (diffusion + convection) process and its importance to evaluate thermodynamic and kinetic parameters.	Demonstrating a mastery understanding of convective diffusional process, describe types of fluid flow in hydro- dynamic process, depicts excellently mass transport limitation (levich) and those associated with kinetic limitations (Koutecky- Levich) theories, apply these theories to	Demonstrating a good understanding of convective diffusional process, describe types of fluid flow in hydro- dynamic process, depicts logically mass transport limitation (levich) and those associated with kinetic limitations (Koutecky- Levich) theories, apply these theories to evaluate kinetics	Demonstrating an average understanding of convective diffusional process, describe types of fluid flow in hydro- dynamic process, fairly depicts mass transport limitation (levich) and those associated with kinetic limitations (Koutecky- Levich) theories, fairly apply these theories to evaluate kinetics	Demonstrating a less satisfactory understanding of convective diffusional process, fairly describe types of fluid flow in hydro-dynamic process, fairly depicts mass transport limitation (levich) and those associated with kinetic limitations (Koutecky- Levich) theories, hardly apply these theories to	Demonstrating a weak understand- ing of convective diffusional process, hardly describe types of fluid flow in hydrodynamic process, weakly depicts mass transport limitation (levich) and those associated with kinetic limitations (Koutecky- Levich) theories, hardly apply these theories to evaluate kinetics
	theories to evaluate kinetics	evaluate kinetics and thermodyna-	evaluate kinetics and thermodyna-	these theories to evaluate kinetics	evaluate kinetics and thermodyna-
	and thermodyna- mic parameters.	mic parameters.	mic parameters.	and thermodyna- mic parameters.	mic parameters.

5. Instructional Methods:

Lectures and Tutorials

- Lectures will be primarily based on the material described in the textbook.
- A tutorial session will be conducted at the end of each chapter via solving some assigned problems.
- Other information (power point presentation, exam sample, model answer of some problems, etc) are provided through e-learning tools.

Assignments

During the period of this semester, each student should submit <u>ONE</u> report about the application of electrochemistry written in journal format described as below;

- (i) <u>Introduction</u>: comprehensive literature review of the electrochemistry application theme accompanied by relevant references.
- (ii) <u>Experimental Conditions</u>: state the type of reagents, instrumentation, preparation of samples, surface characterization, electrodes, etc.
- (iii) <u>Discussion</u>: show the major results and achievements of that application accompanied with some figures, reaction schemes or/ and tables.
- (iv) <u>*Conclusions:*</u> a brief description of the importance of the above application.
- (v) <u>*References:*</u> list of references in ordered form as given in the body of the report.

Suggested topics:

(1) Chemical sensors for biological and pharmaceutical applications such as glucose, dopamine, ascorbic acid, uric acid, cholesterol, DNA, ephedrine, etc. *(select one application)*

(2) Chemical sensors for environmental applications such as heavy metals, hydrogen sulphide, nitrogen oxides, etc. (*select one application*)

- (3) The chloro-alkali industry (the production of Chlorine, Hydrochloric acid and Sodium hydroxide).
- (4) Metal winning and refining of *copper* or *aluminium*.
- (5) Photo-electrochemistry and its application.
- (6) Electrochemistry and thermodynamic of corrosion.

- (7) Potential–pH diagram (Pourbaix Diagram) and its application.
- (8) Corrosion protection and inhibition.
- (9) Lithium secondary Batteries.
- (10) Hydrogen–Air Fuel Cells (Low temperature alkaline cell) and (High temperature cells).

6. Topics and Time Frame

Chapters	Topics	Sections	Weeks
	(1) Introduction and overview of electrode proce		
CH. 1	1.1. Introduction.	1.1	
	1.2. Non-faradaic processes and the nature of the electrode/ solution interface.	1.2	1 2
	1.3. Faradaic processes and factors affecting rates of electrode reactions.	1.3	1-3
	1.4. Introduction to mass transfer controlled reactions.	1.4	
	1.5. Semi-empirical treatment of nernstian reactions with coupled chemical reactions.	1.5	
	(2) Potentials and thermodynamics of cells		
	(i) Reversibility		
	(ii) Reversibility and Gibbs free energy		
	(iii) Free energy and cell EMF	21	
	(iv) Half reactions and standard reduction potentials		4 – 5
CH. 2	(v) EMF and concentration, cell formal potentials		
	(vi) Reference electrodes		
	(vii) Interfacial potential differences	2.2	
	(viii) Liquid junction potentials	2.3	
	(3) Kinetics of electrode reactions		
	3.1. Review of homogeneous kinetics.	3.1	
	3.2. Essentials of electrode reactions.	3.2	
CH. 3	3.3. Butler-Volmer model of electrode kinetics.	3.3	6 - 8
	3.4. Implications of the Butler-Volmer model for the	3.4	
	one step, one electron process.		
	(4) Mass transfer by migration and diffusion		
	4.1. Derivation of a general mass transfer equation.	4.1	
СН. 4	4.2. Migration	4.2	
	4.3. Mixed migration and diffusion near an active electrode.	4.3	9
	4.4. Diffusion and Fick's laws.	4.4	
	(5) Basic potential step methods		
	5.1. Overview of step experiments.	5.1	
	5.2. Potential step under diffusion control.	5.2	
CH. 5	5.3. Diffusion controlled currents at ultra-micro- electrodes.	5.3	10
	(6) Potential sweep methods		
	6.1. Introduction.	6.1	

СН. 6	6.2. Nerstian (reversible) systems.	6.2	
	6.3. Totally irreversible systems.	6.3	11 10
	6.5. Cyclic voltammetry	6.5	11 - 12
	6.6. Multicomponent system and multistep charge transfer	6.6	
	(9) Methods involving forced convection		
	(Hydrodynamic methods)		
	9.1. Introduction.	9.1	
СН. 9	9.2. Theoretical treatment of convective systems.	9.2	12 1/
	9.3. Rotating disk electrode.	9.3	15 - 14
	9.4. Rotating ring disk electrode	9.4	
	(11) Bulk electrolysis		
CH. 11	11.7. Flow and thin layer electrochemistry	11.7	15
	11.8. Stripping analysis.	11.8	