SULTAN QABOOS UNIVERSITY College of Science Department OF Computer Science COMP5595: Model Driven Approach for Software Engineering Semester: Spring 2015

LECTURES: MON&WED @ 12:00 - 13:20 - CMT/D09 **OFFICE HOURS:** MON@ 8:00- 10:00, WED @ 8:00- 10:00

Instructor: Dr. Naoufel KRAIEM Extension: 2220 Credit Hours: 3 (3) Room: 0013 Email: naoufel@squ.edu.om

Textbook:

 MDA Distilled Stephen J. Mellor, Kendall Scott, Axel Uhl, Dirk Weise Publisher: Addison-Wesley Professional, 2004. ISBN-10: 0201788918

References:

 "Model Driven Architecture with Executable UML"
Chris Raistrick, Paul Francis, John Wright, Colin Carter, Ian Wilkie Publisher: Cambridge University Press, 2004.
ISBN: 0521537711
"Executable UML: A Foundation for Model Driven Architecture" Stephen J.Mellor, Marc J. Balcer, Stephen Mellor, Marc Balcer Publisher: Addison-Wesley Professional, 2002.
ISBN-10: 0201748045

Prerequisite by course:

1. COMP 3401: Introduction to Software Engineering **Prerequisites by topic**

1. UML diagrams (use case, class)

Course Description:

The course presents the enabling technologies of the model driven approach to software engineering. Topics covered include UML metamodel, UML profiles, Meta-Object Facility (MOF), Introduction to the Object Constraint Language (OCL), Model Driven Development (MDD), Model Driven Architecture (MDA), Platform-Independent Models (PIM), Platform-Specific Models (PSM), Model Transformations, Action Specification, Automatic System Generation, Using MDA in a typical project, Case Studies.

Course Outcomes

On successful completion of the course student will be able to understand:

- 1. To explain the socio-technical and legacy systems (c3).
- 2. To Practice UML 2 (k2, b2)
- 3. To explain the MDA framework, including the platform-independent model (PIM) and the platform-specific model (PSM) (b2)
- 4. To explain The Meta Object Facility (MOF)--the OMG's adopted standard for metamodeling (c3)
- 5. To explain the horizontal, vertical, and merging mappings between models (h1, h2)
- 6. To Build marks and marking models (c2)
- 7. To Elaborate models, including viewing generated models, (k2)and managing manual changes (c3)
- 8. To Build executable models with Executable UML (k2)
- 9. To explain Agile MDA development (e1, d1)
- 10. Describe the professional and ethical issues involved with software engineering. (e2)

Credit Hours: 3

Week	Торіс
1	Introduction Software Modeling
2 and 3	Introduction to MDA
4 and 5	Overview and advanced aspects of UML
6 and 7	Specifying constraints: Introduction to Object Constraint Language (OCL)
7 and 8	Meta Modeling : Overview of UML Metamodel and Meta Object Facility
9	Review and Executable UML (Model Driven Architecture)
10 and 11	Platform-Independent Modeling with domains
12 and 13	Model Transformations
	Action Specification
	Automatic System Generation
14	Student Projects

Assessment plan:

The students will be evaluated according to the following marking scheme:

Item	Weights
Project made up of 3 parts:	30% (Weeks: 9, 12 and 14)
Midterm Exam 1	15% (Week 8; Wednesday)
Midterm Exam2	15% (Week13; Wednesday)
Final Exam :	40%
Total:	100%

Policy on late submission and cheating:

1. Late submission of assignments faces a penalty of 10% per day

2. Students involved in copying will be <u>severely penalized</u>.

A <u>zero mark</u> will be assigned the first time a student is caught involved in copying and his/her name will be added to a watch list maintained by the Head of Department. Further repeated involvement in copying will cause the student to get an <u>**F** grade</u> in that course. This is in line with the university academic regulations (see pages 36-37 of the 2005 edition of the university academic regulations booklet)

LO-PI Mapping Table

LO	Related to PI	Addressed in	Assessed in component
		chapter/section	
1	(c3)	Ch1 and Ch2	Mini-project
2	(k2, b2)	Ch1, Ch2 and Ch9	Midterms, Mini-project
			and or Final
3	(b1)	Ch2, Ch12 and Ch3	Midterm2, Mini-project
			and or Final
4	(c3)	Ch7 and Ch8	Midterm2, Mini-project
			and or Final
5	(h1,h2)	Ch12 and Ch13	Final exam and Mini-
			project
6	(c2)	Ch12 and Ch13	Mini-project and or Final
7	(c3)	Ch12 and Ch13	Final exam and/or Mini-
			project
8	(k2)	Ch9	Mini-project
9	(e1, d1)	Ch14	Presentation
10	(e2)	Ch1	Mini-project and/or Final
			exam

List of PIs enabled in this course

- b1: An ability to analyze a problem.
- c2: An ability to implement a designed computer-based system, process, component, or program to meet identified requirements.
- c3: An ability to evaluate an implemented computer-based system, process, component, or program to meet identified requirements.
- d1: An ability to collaborate with other teammates.
- e1: An understanding of professional issues and responsibilities.
- e2: An understanding of ethical issues and responsibilities.
- h1: Recognition of the need for continuing professional development.
- h2: Ability to engage in continuing professional development.
- k2: An ability to use software development and programming tools in the construction of software systems.